
Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Flow-sensitive rewritings and
Inliner improvements

for the Graal JIT compiler

Miguel Garcia
http://lampwww.epfl.ch/~magarcia/

2014-07-07

1 / 25

http://lampwww.epfl.ch/~magarcia/

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Outline

Flow-sensitive rewritings during HighTier
Example
Rewritings in place
Metrics
Improvements over ConditionalEliminationPhase

Inliner improvements
Refactoring
How the inliner works
Customization points, closure-aware inlining heuristic
Future Work

2 / 25

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Flow-sensitive rewritings during HighTier

Example

Let’s find redundancies in the program below:

public void t3Snippet(Object p, Object q) {
if (p != null) {

String s = (String) p;
if (q == p) {

myMethod(
p == null ? 22 : 33,
q instanceof String ? 44 : 55

);
}

}
myMethod(

p == null ? 22 : 33,
q instanceof String ? 44 : 55

);
}

3 / 25

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Flow-sensitive rewritings during HighTier

Example

4 / 25

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Flow-sensitive rewritings during HighTier

Rewritings in place

Goals of FlowSensitiveReductionPhase:

I Type Refinements:
I PiNodes for reference values (most precise safe “downcasting”)
I at receivers of virtual calls.

I Partial Evaluation:
I reduction of side-effects free (multi-node) expressions,
I whenever sub-expressions are known constant.

For now under a flag but works reliably. Check for yourself:

buildbot try -b try-dacapo_graal_sunfire ←↩
--properties="tryvmargs=-G:+FlowSensitiveReduction"

buildbot try -b try-scala-dacapo_graal_sunfire ←↩
--properties="tryvmargs=-G:+FlowSensitiveReduction"

5 / 25

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Flow-sensitive rewritings during HighTier

Rewritings in place

FlowSensitiveReductionPhase

1. makes a single pass in dominator-based order over the graph
2. tracks flow-sensitive properties of values

I via a state abstraction
I for each reachable control-flow path

3. performs rewritings (type refinements, partial evaluation)

Details follow ...

6 / 25

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Flow-sensitive rewritings during HighTier

Rewritings in place

“Track properties of values” means, update the state abstraction
at the following fixed-nodes:

I two control-splits: IfNode and TypeSwitchNode

I check-casts

I guarding-pis
(change the stamp of its input upon a condition being true)

I null-checks

I fixed-guards,

public FixedGuardNode(LogicNode condition,
DeoptimizationReason deoptReason,
DeoptimizationAction action)

7 / 25

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Flow-sensitive rewritings during HighTier

Rewritings in place

At a program point, given its state abstraction,
rewritings are performed:

I simplification of side-effects free expressions
I inputs of fixed-nodes
I devirtualization

I simplification of control-flow
I input-condition to an IfNode
I eliminating redundant check-casts, guarding-pis, null-checks, and

fixed-guards, due to:
I an equivalent guarding node already in scope:

use it instead and remove the redundant one
I “always fails”: replace with FixedGuardNode(false)

8 / 25

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Flow-sensitive rewritings during HighTier

Metrics

Metrics obtained via -G:+FlowSensitiveReduction
-G:Meter=FlowSensitiveReduction
Example: bootstrapping (after compiling 3418 methods):

I Cost

|-> FSR-ImpossiblePathDetected=1250
|-> FSR-NullnessRegistered=94540
|-> FSR-ObjectEqualsRegistered=7765
|-> FSR-TypeRegistered=78177

I Benefit

|-> FSR-CheckCastRemoved=1
|-> FSR-Downcasting=3045
|-> FSR-EquationalReasoning=182
|-> FSR-FixedGuardNodeRemoved=566
|-> FSR-GuardingPiNodeRemoved=8212
|-> FSR-InstanceOfRemoved=60
|-> FSR-MethodResolved=19
|-> FSR-NullCheckRemoved=1007
|-> FSR-NullInserted=355
|-> FSR-ObjectEqualsRemoved=0
|-> FSR-UnconditionalDeoptInserted=1

9 / 25

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Flow-sensitive rewritings during HighTier

Improvements over ConditionalEliminationPhase

Improvements over ConditionalEliminationPhase

I lower memory footprint: 3 maps instead of 6
I unreachable paths are detected and ignored, ie

I no state updates on them
I they don’t get merged at join points, more precise merged states

I skips redundant cloning of state in SinglePassNodeIterator
I http://hg.openjdk.java.net/graal/graal/rev/9c9bb06a6b83

I http://hg.openjdk.java.net/graal/graal/rev/84cf47e9c9f3

I SinglePassNodeIterator: don’t hold objects it won’t access again
I early pruning of state map, visit a whole method

http://hg.openjdk.java.net/graal/graal/rev/4d5b1e7a4d93

I could be more compact with primitive-specialized collections

I tests, asserts, and source code documentation

10 / 25

http://hg.openjdk.java.net/graal/graal/rev/9c9bb06a6b83
http://hg.openjdk.java.net/graal/graal/rev/84cf47e9c9f3
http://hg.openjdk.java.net/graal/graal/rev/4d5b1e7a4d93

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Inliner improvements

Refactoring

Inliner improvements.
It all started with a few refactorings, 138 commits to be exact

11 / 25

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Inliner improvements

Refactoring

Cost/benefit of refactoring (a matter of when, not if)

I most of them “just” for readability

I more maintainable code, fewer errors in the long run

I but also for performance

Example (1 of 4): De-aliasing

I method-param aliases final-field
[inliner] no need to alias a final field

http://hg.openjdk.java.net/graal/graal/rev/096848853662

I method-param pointing to what’s navigable via final-field
[inlining-5] “where does optimisticOpts come from?” answered

http://hg.openjdk.java.net/graal/graal/rev/ab2858ab79e9

I Such aliases contributed to the Inlining phase needing too many
parameters

12 / 25

http://hg.openjdk.java.net/graal/graal/rev/096848853662
http://hg.openjdk.java.net/graal/graal/rev/ab2858ab79e9

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Inliner improvements

Refactoring

Example (2 of 4): moving mutators closer to the locations they mutate

I [inliner] another mutator that finds its way to the class where it belongs

http://hg.openjdk.java.net/graal/graal/rev/1461d7627707

Example (3 of 4): Pull side-effects out gives reusable query-methods

I pulling side-effects (logging) out of method that evals a condition

http://hg.openjdk.java.net/graal/graal/rev/acfcb5ace52f

Example (4 of 4): Performance (little things add up)

I [inliner] lazy allocation of param-usages container; documentation

http://hg.openjdk.java.net/graal/graal/rev/5aaef6a8985d

I [inliner] de-duplicate parameters for callsites with duplicate arguments

http://hg.openjdk.java.net/graal/graal/rev/8d0202b354fb

13 / 25

http://hg.openjdk.java.net/graal/graal/rev/1461d7627707
http://hg.openjdk.java.net/graal/graal/rev/acfcb5ace52f
http://hg.openjdk.java.net/graal/graal/rev/5aaef6a8985d
http://hg.openjdk.java.net/graal/graal/rev/8d0202b354fb

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Inliner improvements

Refactoring

As refactoring progressed, synergy with:

I Documentation
I [inlining] documentation

http://hg.openjdk.java.net/graal/graal/rev/e90ec3e5e45b

I Assertions
I [probability-cache] assertions added; unreachable code removed

http://hg.openjdk.java.net/graal/graal/rev/aa28d876651a

14 / 25

http://hg.openjdk.java.net/graal/graal/rev/e90ec3e5e45b
http://hg.openjdk.java.net/graal/graal/rev/aa28d876651a

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Inliner improvements

How the inliner works

How the inliner works. It grows and shrinks a stack as follows:

1. Inlining candidates are explored depth-first,
I sifting down caller information about arguments (eg, constants)
I thus specializing the feasible target(s)

2. At some point exploration stops,
I InliningPolicy.continueInlining(StructuredGraph)

3. Inlining: at a callsite in the stack-top graph

After some rounds of the above,

I the stack of inlining candidates eventually shrinks back

I to the root method on which inlining was launched
15 / 25

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Inliner improvements

Customization points, closure-aware inlining heuristic

Customization point (1 of 2)
Pick a “promising” callsite first (as next candidate for exploration during
depth-first search):

public static class ArgumentStats
implements Comparable<ArgumentStats> {

// The immutable positions of freshly instantiated arguments
public final BitSet freshArgsBitSet;
public final boolean hasFixedReceiver;
public final int sizeConstantArgs;
public final int sizeFreshArgs;

A freshly-instantiated argument is either:

I an AbstractNewObjectNode, AllocatedObjectNode, or
VirtualObjectNode

I a ParameterNode whose corresponding argument
is freshly-instantiated.

16 / 25

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Inliner improvements

Customization points, closure-aware inlining heuristic

Why “promising”?

I Once inlined, freshly-instantiated args (usually) don’t escape

I field accesses on freshly-instantiated args avoid indirection

Realized in terms of:

I [inliner] propagating fresh-instantiation info through call-hierarchy

http://hg.openjdk.java.net/graal/graal/rev/f98b033b6050

I a priority-queue for CallsiteHolderExplorable.remainingInvokes,
comparing ArgumentStats

However, the above alone didn’t improve performance.

I ToDo: priority-queue should also consider frequency and
relevance, as in InliningPolicy

17 / 25

http://hg.openjdk.java.net/graal/graal/rev/f98b033b6050

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Inliner improvements

Customization points, inlining heuristic

Customization point (2 of 2)

I Each feasible target method (receiver type-profiling)
is explored before inlining (ie, its graph is inspected)

I Implementation-wise, an InlineableGraph is built for that target
I ToDo: Detect usages of freshly-instantiated args

to influence inlining decisions.

Motivation:

for (i <- 1 to 10) { i => closure-body }

desugared to

new Range(1, 10, 1).foreach(new MyClosure(...captured-values...))

Similarly, Command pattern in Java:

Collections.sort(clazzes, new Comparator<ResolvedJavaType>() {
@Override
public int compare(ResolvedJavaType o1, ResolvedJavaType o2) {

...

18 / 25

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Inliner improvements

Customization points, inlining heuristic

Back to the for-loop example. The foreach receiver is an instance of:

class Range(val start: Int, val end: Int, val step: Int)
extends scala.collection.AbstractSeq[Int] with ...
{

...
/*- this method may well get invoked only once

per activation of its containing method,
thus not necessarily "hot" */

@inline final override def foreach[@specialized(Unit) U](f: Int => U) {
validateMaxLength()
val isCommonCase = (start != Int.MinValue || end != Int.MinValue)
var i = start
var count = 0
val terminal = terminalElement
val step = this.step
while(

if(isCommonCase) { i != terminal }
else { count < numRangeElements }

) {
f(i) /*- <-------- closure invocation inside a loop */
count += 1
i += step

}
}

Side note: allowing loops in expressions sometimes trigger dreaded:
COMPILE SKIPPED: OSR starts with non-empty stack (not retryable)

19 / 25

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Inliner improvements

Customization points, inlining heuristic

Callee-graph specialization: never too soon
The graph that gets pushed for a feasible target is already specialized
to the arguments at the callsite (must be — why in a moment):

I constants replace the corresponding ParameterNode

I duplicate arguments result in a single representative
ParameterNode being used for all duplicates

I the more precise stamp of an argument is carried over to its
ParameterNode (in particular for freshly-instantiated args)

Any missed opportunity to specialize the callee-graph results in
missed follow-on reductions at all nested invocation levels.
Terminology:

freshly-instantiated arg (caller perspective)
and

fixed-param (callee perspective)
are two sides of the same coin

20 / 25

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Inliner improvements

Customization points, inlining heuristic

Missed opportunities:

1. final-fields of fixed-params denote a caller-available SSA value:
sometimes a constant
sometimes a value with more precise stamp

2. in the other direction, caller-specialization suggested by
callee-graph:

I more specific return type
I constant return value

That would be good to know, because:
I allows callsite specialization without inlining (just downcast)
I follow-on reductions throughout the caller

In the example

new Range(1, 10, 1).foreach{ i => ... }

which final-fields are amenable to the optimization above?

Note: the “loop body” may include captured-usages as well as further
higher-order expressions; compounding the “missed opportunities” bill.

21 / 25

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Inliner improvements

Customization points, inlining heuristic

A word of caution about “callsite-specific return-types”, quoting from
http://mail.openjdk.java.net/pipermail/graal-dev/2014-January/001538.html

The GraphBuilder is not built for precise analyses of
bytecode methods - consider this example:

Object foo (int a) {
try { return Integer.valueOf(1000 / a); }
catch (ArithmeticException e) { return new Error(); }

}

The GraphBuilder never generates code to handle the
division by zero, so the exception handler will never be
compiled, even with all optimistic optimizations disabled.
Therefore, information about the return type would need to
be checked before being used.

22 / 25

http://mail.openjdk.java.net/pipermail/graal-dev/2014-January/001538.html

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Inliner improvements

Customization points, inlining heuristic

Counterpoint to
propagating “final-fields of fixed-parms” from caller to callee:

1. No problem,

I after inlining kicks in
I read-elimination will propagate (constants, etc) anyway.

Except that, inlining less likely to kick in
for non-specialized callee-graph (chicken and egg).

2. Not always safe to propagate instance-final fields.

Summary of forces at play (next slide)

23 / 25

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Inliner improvements

Customization points, inlining heuristic

Quoting from http://www.azulsystems.com/blog/cliff/2011-10-27-final-fields-part-2

These other frameworks are doing a Read (and if it is null), a
Write [via reflection], then futher Reads. ... when its JIT’d
[null is] the value used for some of the later Reads.
...
To summarize: JRuby makes lots of final fields that really
ARE final, and they span not-inlined calls (so require the
final moniker to be CSE’d), AND such things are heavily
chained together so there’s lots of follow-on CSE to be had.
...
If I turn off final field optimizations to save the Generic
Popular Frameworks, I burn JRuby and probably other
non-Java languages that emit non-traditional (but legal)
bytecodes. If I don’t turn them off, these frameworks take
weird NULL exceptions under load (as the JIT kicks in).

24 / 25

http://www.azulsystems.com/blog/cliff/2011-10-27-final-fields-part-2

Flow-sensitive rewritings and Inliner improvements for the Graal JIT compiler

Inliner improvements

Future Work

Future Work

1. lazy graph-copying of inlining candidates
(ie, copy-on-write, or equivalently: no mutation – no copying)

2. take into account usages of freshly-instantiated args

25 / 25

	Flow-sensitive rewritings during HighTier
	Example
	Rewritings in place
	Metrics
	Improvements over ConditionalEliminationPhase

	Inliner improvements
	Refactoring
	How the inliner works
	Customization points, closure-aware inlining heuristic
	Future Work

