
DRAFT—Do not distribute

Trace-based Register Allocation in a JIT Compiler

Josef Eisl
†

Institute for System Software
Johannes Kepler University

Linz, Austria

Matthias Grimmer
†

Institute for System Software
Johannes Kepler University

Linz, Austria

Doug Simon
‡

Oracle Labs
Switzerland

Thomas Würthinger
‡

Oracle Labs
Switzerland

Hanspeter Mössenböck
†

Institute for System Software
Johannes Kepler University

Linz, Austria
†
{josef.eisl,matthias.grimmer,hanspeter.moessenboeck}@jku.at

‡
{doug.simon,thomas.wuerthinger}@oracle.com

ABSTRACT
State-of-the-art dynamic compilers often use global ap-
proaches, like Linear Scan or Graph Coloring, for register
allocation. These algorithms consider the complete compi-
lation unit for allocation, which increases the complexity of
the implementation (e.g., support for lifetime holes in Linear
Scan) and potentially also affects compilation time. We pro-
pose a novel non-global algorithm, which splits a compilation
unit into traces based on profiling feedback and subsequently
performs register allocation within each trace individually.
Traces reduce the problem size to a single linear code seg-
ment, which simplifies the problem a register allocator needs
to solve. Additionally, we can apply different register alloca-
tion algorithms to each trace. We show that this non-global
approach can achieve results competitive to global register
allocation.

We present an implementation of Trace Register Alloca-
tion based on the Graal VM and show an evaluation for com-
mon Java benchmarks. We demonstrate that performance
of this non-global approach is within 3% (on AMD64) and
1% (on SPARC) of global Linear Scan register allocation.

CCS Concepts
•Software and its engineering → Just-in-time com-
pilers;

Keywords
Trace Register Allocation; Register Allocation; Trace Com-
pilation; Linear Scan; Just-in-Time Compilation; Virtual
Machines

DRAFT — to be submitted to PPPJ ’16
(created on October 2, 2017)

1. INTRODUCTION
Register allocation is an important compiler optimiza-

tion [1–4] that has been the focus of intensive research. Its
task is to map variables1 to physical registers of the pro-
cessor. If the number of variables that are live at the same
time exceeds the number of available registers, some vari-
ables need to be stored in memory (i.e., spilled). A variable
can also be stored in multiple locations during its lifetime
(i.e., split).

Chaitin et al. [5] introduced Register Allocation via Graph
Coloring, which was the first widely applied approach for
global register allocation, in which registers are allocated for
the whole compilation unit (method) at once instead of allo-
cating them per block. Later numerous refinements and im-
provements were proposed including Briggs et al. [1], Smith
et al. [6], or George et al. [7]. Chaitin et al. showed that
optimal register allocation is in general NP-complete [5], so
all graph-coloring approaches use heuristics to achieve poly-
nomial run-time behavior.

In spite of these heuristics, the worst-case complexity of
graph-coloring register allocation is usually quadratic, which
makes it sub-optimal for just-in-time (JIT) compilation. JIT
compilers therefore often use the simpler Linear Scan ap-
proach, which was introduced by Poletto et al. [2] and ex-
tended in many subsequent contributions [3, 4, 8]. Lin-
ear Scan is used in numerous dynamic compilers includ-
ing the HotSpot client compiler [9], the JikesRVM [10],
Google’s JIT compiler for JavaScript (V8), and initially also
in LLVM [11].

Like Graph Coloring, Linear Scan is a global register al-
location approach meaning that the algorithm works on the
whole compilation unit. The idea is to bring basic blocks of
the control-flow graph into a linear order. The liveness of a
variable is expressed as an interval along this linear order.

1 Others use the term temporaries to distinguish between
intermediate results of the evaluation of an expression and
variables in the source code of the program. We call every
non-physical, non-constant operand (i.e. all operands that
are subject to register allocation) in the intermediate repre-
sentation of the compiler a variable.



The intervals are then traversed based on their start posi-
tions, from earliest to latest. In the original proposal [2] an
interval only consists of a single live range. An example is
shown in Figure 1(b). In general, liveness information can-
not be expressed as a continuous range on a linear list of
blocks. The approach by Poletto and Sarkar overestimates
liveness which can lead to unnecessary spilling in cases where
a register is still available.

To mitigate this problem approaches with exact lifetime
information were proposed [3, 4, 8] where intervals can con-
tain so-called lifetime holes, i.e. ranges where the value of
a variable is not needed. This information allows these ap-
proaches to find better allocations compared to the original
Linear Scan. However, lifetime holes introduce a more com-
plex representation which leads to an allocation algorithm
which is no longer linear [3, 8]. Figure 1(c) depicts an ex-
ample of intervals with lifetime holes.

Another issue with Linear Scan is that, due to the lin-
earization of the basic blocks, control-flow is not directly
visible to the algorithm. For example, finding optimal posi-
tions for inserting spill moves or for deciding where to split
an interval needs control-flow context.

Since Linear Scan is a global register allocation approach
all parts of a compilation unit influence each other. More-
over, uncommon (cold) code parts can have a negative im-
pact on frequently executed (hot) parts. For example, a
sub-optimal spilling position in a cold part might be prefer-
able to a globally better spilling position in a hot path.

Trace Register Allocation is a novel register allocation
approach which is specifically designed for JIT compila-
tion with run-time feedback. It addresses the shortcomings
described above. In contrast to global approaches, Trace
Register Allocation divides the blocks of the control-flow
graph into disjoint subsets of sequentially executed blocks
(so-called traces) and allocates registers for each subset in-
dependently.

We present the details of a successful Trace Register Al-
location [12] implementation for the Graal compiler [13–18],
an optimizing compiler for the Java HotSpotVM [19]. We
show that our new implementation is capable of finding reg-
ister allocations that are comparable to those of the Linear
Scan implementation currently used by Graal [3, 4].

This paper contributes the following:

• We present Trace Register Allocation, a modular, non-
global framework for allocating registers. It allows do-
ing register allocation independently on different traces
of a compilation unit (possibly using different algo-
rithms).

• Two simple algorithms for finding traces in a control-
flow graph that are suitable for trace register alloca-
tion.

• An extension of our low-level intermediate represen-
tation (LIR) to capture liveness information at basic
block boundaries that simplifies working with traces.

• Two local inter-trace optimizations: inter-trace hints
to reduce the number of data-flow resolution moves
and spill information sharing avoid unnecessary
spilling.

• We evaluate our Trace Register Allocation implemen-
tation and show that the approach is capable of finding
allocations comparable to Linear Scan.

int max(int a, int b) {
if (a >= b)

return a;
else

return b;
}

(a) Source Code

a b
•

�

•

�

(b) Original

a b
•

�

•

�

(c) Holes

Figure 1: Lifetime Intervals

The rest of the paper is organized as follows. We start
with a system overview. Section 3 describes the Trace Reg-
ister Allocation approach and our implementation of it. In
Section 4 we present inter-trace optimizations which improve
the quality of the code generated by the allocator. We eval-
uate our implementation in Section 5. Section 6 discusses
related work and compares it to our approach. We conclude
the paper with a summary and an outline of future work in
Section 7.

2. SYSTEM OVERVIEW
Graal is an optimizing compiler for the Java HotSpotVM

that translates Java Bytecode to native machine code. It
incorporates two different intermediate representations. In
the frontend Graal uses a graph-based representation (i.e.,
high-level IR or HIR) [14]. On this level Graal performs op-
timizations such as (speculative) inlining, dead-code elimi-
nation, conditional elimination, partial escape analysis [17]
and loop unrolling to name just a few [15]. After applying all
optimizations, the graph-based representation is scheduled
and converted into a low-level intermediate representation
(i.e., LIR). This IR is in SSA (Static Single Assignment [20])
form and is based on a control-flow graph with basic blocks.
Blocks contain a list of (LIR) instructions that are close
to the actual machine operations. The backend uses this
LIR for register allocation and code emission. Note that,
although the instructions in the LIR already represent ma-
chine operations, the backend itself is machine-independent.

3. TRACE REGISTER ALLOCATION
Register allocation in a dynamic compiler is done at ap-

plication run time, hence, the algorithm needs to find a
trade-off between compile time and quality of the allocation.
Second, since the compiler is invoked dynamically, the exe-
cution environment can provide profiling information about
the behavior of the application.

Most of an application’s run time is spent in a fraction
of its code [21]. Ideally, we should therefore invest more
time optimizing these important parts of the compilation
unit and should not spend too much time on insignificant
parts [22]. In addition, we should offload spill and split code
into these cold parts if possible.

3.1 Overview
The key idea of our approach is to divide the control-flow

graph into distinct regions of sequentially executed blocks.
We use the profiling feedback provided by the runtime sys-
tem to find a suitable partition. Due to similarities to trace
scheduling [23, 24] we call these regions traces. Figure 2(c)
and Figure 2(d) show possible traces of the control-flow
graph in Figure 2(a).



B1

B2 B3

B4

B8 B5

B6 B7

(1)

(0.8) (0.2)

(5.2)

(5.1)

(0.1) (5)

(0.1)

(a) Control-flow Graph

boolean equals(int[] a, int[] b) {
/*B1*/ if (b.length != a.length)
/*B2*/ return false;
/*B3*/ int i = 0;
/*B4*/ while (i < a.length) {
/*B5*/ if (a[i] != b[i])
/*B6*/ return false;
/*B7*/ i++;

}
/*B8*/ return true;

}

(b) Java Source

T1 T2 T3 T4

B1

B2 B3

B4

B5

B6B7

B8

[1]

[2] [3]

[4]

[5]

[6] [7]

[8]

(1)

(0.8)
(0.2)

(5.2)

(5.1)

(0.1)
(5)

(0.1)

(c) Unidirectional Trace Builder

T1 T2 T3 T4

B1

B2B3

B4

B5

B6B7

B8

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

(1)

(0.8)
(0.2)

(5.2)

(5.1)

(0.1)
(5)

(0.1)

(d) Bidirectional Trace Builder

Figure 2: Trace-building Example – Source code, control-flow graph and trace building results of java.utils.Ar-

rays#equals from the OpenJDK. (null-checks omitted for simplicity.) The values in parentheses (e.g. (0.8)) denote relative
execution frequencies. The numbers in square brackets (e.g. [2]) is the order the trace builder processed the block.

Linear Scan

Trivial RA

. . .

foreach trace ∈ T

T ← buildTraces(cfg)

resolveDataFlow(T )

allocate(trace)

Figure 3: Trace Register Allocation Overview

For each of these traces we perform register allocation in-
dependently. This allows mixing different approaches, for
instance Linear Scan and Graph Coloring, during a single
compilation. Allocating registers for a trace includes lifetime
analysis as well as replacing variables with the assigned lo-
cations (i.e. registers or spill-slots). After we have allocated
all traces we need to resolve data-flow mismatches between
traces since a variable might have been allocated to different
locations in different traces. Figure 3 depicts an overview of
the algorithm. We will cover the details for each step in the
following sections.

3.2 Trace Building

Definition of Traces.
A trace is a distinct sequence of basic blocks in a control-

flow graph. We call the first block in a trace its head. Every
block is part of exactly one trace and all traces are non-

empty. Note that the blocks of a trace can have incoming or
outgoing edges to other traces. These are called inter-trace
edges. We identify so-called critical edges in the control-flow
graph, i.e., edges between blocksX and Y whereX has more
than one successor and Y has more than one predecessor.
For critical edges we insert an empty block (e.g. B4 in Fig-
ure 4(c)). If this block is still empty after register allocation
it is removed before code emission.

In the simplest case, every block can be treated as a sep-
arate trace. This would be equivalent to local register al-
location. However, longer traces offer more opportunities
for moving spill code (e.g., out of loops) and thus to im-
prove the quality of the register allocation, so we need more
sophisticated trace building strategies.

In the following, we propose two trace building strategies
that utilize the run-time feedback provided by the execution
environment.

Unidirectional Trace Building.
To build a new trace we select a block with no predeces-

sors or one where all predecessors are already part of another
trace. If there are multiple candidates we choose the block
with the highest execution frequency. The block is added
to the trace and we proceed with the successor of highest
probability. We repeat this until there is no successor that
is not already part of a trace. Figure 2(c) depicts an exam-
ple. Note that this strategy tries to minimize the trace exit
probability.



int getOrInit(int[] arr,
int i,
int init) {

if (arr[i] == -1) {
arr[i] = init;

}

return arr[i];
}

(a) Source Code

T1

T2B1

B2

B3

a
r
r
[
i
]

i
n
i
t

•

�

�

• a
r
r
[
i
]

i
n
i
t

� �

critical edge

(b) Lifetime

T1

T2

(arr, i, init)
test arr[i],−1
branch (arr, i, init)

(arr, i,−)
// split critical edge

jump (arr, i)

(arr, i)
return arr[i]

(arr, i, init)
store arr[i], init
jump (arr, i)

B1

B2

B3

B4

(c) Annotated IR

Figure 4: Lifetime on Traces

Bidirectional Trace Building.
For the bidirectional trace builder we select the block with

the highest execution frequency from the set of candidate
blocks, i.e., the blocks that are not yet part of a trace. From
this initial block, we first grow the trace upwards. Among
all predecessors from the candidate set we select the one
with the highest execution frequency and prepend it to the
trace. Note that we do not follow loop back-edges. This
means after we have processed a loop header we always con-
tinue with the block entering the loop (or stop), never with
the loop end block. Once there is no candidate we start
the downwards pass, again starting at the initial block. We
proceed in a way that is similar to the unidirectional trace
builder. Bidirectional trace building has already been de-
scribed by Ellis [23] and Lowney et al. [24] although they
used it for other purposes than register allocation.

Figure 2(d) shows that the traces formed by the two strate-
gies can differ.

We evaluated both approaches and came to the conclusion
that the unidirectional trace builder is not only simpler but
achieves better results than its bidirectional counterpart (see
Section 5).

3.3 Intermediate Representation

Liveness Information.
In Trace Register Allocation, we can use different allo-

cation algorithms for our traces (e.g., Graph Coloring or
Linear Scan). These algorithms should operate locally on a
single trace without considering other traces. However, the
liveness of a variable needs to be considered globally. Let

us assume the following example (Figure 4(c)): In trace T1
we need to know that variable init is used in trace T2 and
therefore we need to keep it alive until the end of block B1.

We can solve this by performing a global liveness analy-
sis before register allocation and by annotating each basic
block in the IR with this information. We call this informa-
tion incoming and outgoing live-sets of a block. Figure 4(c)
shows our extended intermediate representation of the code
in Figure 4(a). After this analysis, the allocation algorithm
can work on a single trace without considering other traces,
hence breaking the inter-dependency between traces.

Handling inter-trace edges.
We apply register allocation to each trace independently.

At points where traces are split or merged (inter-trace
edges), the variables might have been allocated to differ-
ent physical locations. We need to resolve this by inserting
moves from the location in the predecessor block to the lo-
cation in the successor block. This is similar to data-flow
resolution (and ϕ-deconstruction) in the (SSA-based) Lin-
ear Scan register allocator [3, 4]. Since the register alloca-
tion algorithm updates the live-sets of the blocks with the
actual physical locations we can use this information to re-
solve data-flow mismatches.

Both, the global liveness analysis as well as the data-flow
resolution are independent of the register allocation algo-
rithm.

3.4 Allocating Registers for a Trace
One advantage of our approach is that allocating registers

in one trace is completely independent of register allocation
in other traces. In general, any approach can be used for
register allocation within a trace. Also, traces have proper-
ties that are worth exploiting. Since there are no lifetime
holes in a linear code sequence the liveness information is
simpler to compute and to maintain than in a global regis-
ter allocation algorithm.

Currently, we use two different allocation strategies. The
main strategy is a Linear Scan approach derived from the
global register allocator that is our baseline. The second one
is an allocator for trivial traces, i.e., traces consisting of just
a single jump instruction.

Linear Scan Register Allocation.
We process our traces with the same Linear Scan register

allocation algorithm that is used by our baseline for global
allocation.

Linear Scan register allocation on a single trace simplifies
the algorithm as follows: First, due to the extension of our
intermediate representation the analysis can be done in a
single backwards pass over the trace. Second, since there
are no lifetime holes in a trace, an interval is defined by a
single live-range with a from and a to position. In contrast
to that, the global approach needs to maintain a list of live-
ranges for every interval. Consequently, we do not need to
track the set of inactive intervals, a source of non-linearity
in the global Linear Scan algorithm [3, 4].

Performing Linear Scan allocation on single traces also
simplifies spilling and splitting of intervals. If we run out of
registers we select an interval and spill it to the stack. Since
a trace is a sequence of blocks we can place the move any-
where between the definition of the variable and the position
where the interval is to be split, i.e., the position where we



T1

T2

· · ·
branch (reg0, reg1)

(reg0, reg1)

. . .

(vara, varb)

· · ·

B1

B2 B3

· · · · · ·
already allocated

reg0
hint−−−→ vara

reg1
hint−−−→ varb

Figure 5: Inter-trace Hints

ran out of registers. We place it in the basic block with the
lowest execution frequency. Splitting creates a new single-
live-range interval for the variable on the stack. If this vari-
able is needed in a register again later, we use the same
strategy for splitting the interval and for deciding where to
reload the variable from the stack back into a register.

Trivial Trace Allocator.
A trivial trace is a trace consisting of a single basic block

which contains only a jump instruction. Such blocks are
mainly the result of splitting critical edges. Their purpose is
to transfer the values from the predecessor to the successor
block. Experiments showed that trivial traces are common.
In the DaCapo benchmark suite, for instance, 44% of all
processed traces are trivial. Register allocation is easy for
such a trace. We simply map the incoming values to the
outgoing ones by propagating their locations.

The Trivial Trace Allocator is an example of an allocator
that is crafted for a sub-class of general traces. This flex-
ibility is a key advantage of our trace-based approach over
global approaches.

3.5 Data-flow Resolution
Since register allocation is performed independently for

each of the traces, a variable might end up in one location
in one trace and in a different location in some other trace.
To fix this we need a data-flow resolution phase to align the
mismatch on inter-trace edges. For each of these edges we
compare the locations in the outgoing live-set of the prede-
cessor block to the location in the incoming live-set of the
successor block. If they differ we introduce a move. Note
that all moves along an edge are semantically performed in
parallel, so we need to order them correctly and break data-
dependency cycles. Similar to Linear Scan [4], resolution
also deconstructs the SSA-form.

It is important to note that due to our intermediate rep-
resentation this process is independent of the allocation al-
gorithm or the notion of liveness that is used for each trace.

4. INTER-TRACE OPTIMIZATIONS
Data-flow resolution is sufficient for the correctness of

Trace Register Allocation. However, the allocation quality
can be improved by performing local inter-trace optimiza-
tions. We propose two optimizations to reduce the number
of moves introduced during data-flow resolution and to avoid
unnecessary spill moves. Both algorithms work on a local
basis and do not increase the complexity of the register al-
location algorithms.

4.1 Inter-trace Hints
Although register allocation for a trace is independent

from register allocation for other traces, it is still beneficial
to use information from already allocated traces. Assume
that we are allocating a trace T2, which has an incoming
inter-trace edge from an already allocated trace T1 (Fig-
ure 5). We annotate the intervals in T1 with hints [3] to
the location of the variable in the predecessor trace T2. In
our example the hints are reg0 → vara and reg1 → varb.
As the name suggests, this is a hint for the allocator to use
a specific location for a variable if possible. This optimiza-
tion reduces the number of moves inserted in the data-flow
resolution phase. The order in which traces are processed
has an impact on the effectiveness of this optimization. We
use the order in which the traces where created during trace
building, which approximates their importance.

4.2 Spill Information Sharing
Since our IR is in SSA-form, every variable can hold only a

single value. Due to spilling and spill-position optimization
a value might be available in two locations at the same time,
i.e., in a register and in a stack-slot. If this is the case at
the predecessor of an inter-trace edge we can exploit it to
avoid redundant spill moves. Similar to the inter-trace hints
we inform the allocator that the value is not only available
in a register but also in a stack slot. Intervals with this
information are preferred candidates for spilling since their
value is already available in memory so that no spill move
needs to be inserted.

5. EVALUATION
We evaluated our Trace Register Allocation approach in

the context of the Graal compiler [13–16, 18] which runs on
top of the HotSpotVM [19]. The HotSpotVM comes with
two just-in-time compilers, the client compiler [9] and the
server compiler [25]. The goal of the client compiler is to
provide fast compilation speed, whereas the server compiler
aims at good code quality at the cost of a higher compilation
time. We use the JVM Compiler Interface [26], which will
be part of the upcoming Java 9 release, to use Graal instead
of the server compiler as the second-tier compiler.

The code produced by Graal is faster than the code gen-
erated by the client compiler and comparable to the code
generated by the server compiler (2–10% slower depending
on the benchmark [15, 18]).

We used Graal revision a563a1d51507 for our evaluation.2

For the experiments we deployed Graal on top of a modi-
fied Java 8 VM which includes the JVMCI.3 We executed
the HotSpotVM in tiered-mode meaning that execution of a
method starts in the interpreter. After hitting an execution
frequency threshold, hot methods are compiled by the client
compiler. If the compiled method exceeds another threshold
it is compiled by Graal. The raw data for all experiments
presented in this paper is available from our website.4

Benchmarks.
We evaluated our results using the DaCapo 9.12 [21,

27], the Scala-DaCapo [28], the SPECjvm2008 [29] and the

2https://github.com/graalvm/graal-core
3http://hg.openjdk.java.net/graal/graal-jvmci-8/
4http://ssw.jku.at/General/Staff/Eisl/TraceRA/PPPJ16/

https://github.com/graalvm/graal-core
http://hg.openjdk.java.net/graal/graal-jvmci-8/
http://ssw.jku.at/General/Staff/Eisl/TraceRA/PPPJ16/


name value

Type Sun Server X3-2 [31]
CPU Model Xeon E5-2690 @ 2.90GHz
CPU Config 2 packages; 2x8 cores; 2x8x2 threads
Memory 192GB
Hard Disk 2x 300GB HDD (RAID1)
OS Ubuntu 12.04
CPU (lxc) 8 cores; 8x2 threads
Mem (lxc) 96GB
Other (lxc) ramdisk

Table 1: Sun Server X3-2 (AMD64)

name value

Type Sparc T5-2 Server [33]
CPU Model Sparc T5 3.60GHz
CPU Config 2 packages; 2x16 cores; 2x16x8 threads
Memory 256GB
Hard Disk 2x 300GB HDD (zfs mirror)
OS Oracle Solaris 11.2
CPU (zone) 14 cores; 14x8 threads (2 cores for host)
Mem (zone) 96GB

Table 2: SPARC T5-2 (SPARC)

SPECjbb2015 [30] benchmark suites. For DaCapo, Scala-
DaCapo and SPECjvm2008 we ran the individual bench-
marks in a distinct VM process. We omitted the startup

benchmarks for SPECjvm2008 since they are not relevant
for this work. Also, we did not run the compiler.sun-

flow benchmark from SPECjvm2008 as well as the eclipse
benchmark from DaCapo due to Java 8 compatibility issues.

Environment.
Since register allocation is highly influenced by the under-

lying processor, we performed the experiments on AMD64
(Intel X86 64bit) as well as on a SPARC T5 to gain confi-
dence that our approach is applicable to different architec-
tures.

For the AMD64 experiments we used a Sun Server X3-2 [31]
with an Intel Xeon E5-2690 processor running Ubuntu 12.04.
We used Linux Containers (lxc) [32] to restrict the VM to
a single package of the machine to avoid negative influence
due to switching nodes during benchmark execution. The
details of the machine can be found in Table 1.

The second machine is a Sparc T5-2 Server [33] running
Oracle Solaris 11.2. Similar to the containers in the AMD64
setup we used Solaris Zones [34] for isolation of the sockets.
More information is shown in Table 2.

Configurations.
The baseline for our experiments is the global Linear Scan

implementation [3, 4] (denoted by LSRA) that is used in
Graal by default. If not stated otherwise, all results are nor-
malized to the mean of Linear Scan. We use a box plot [35]
to visualize the results of our experiments.

The TraceRA configuration is our Trace Register Alloca-
tor implementation in Graal with all optimizations enabled.
The TraceRA BiTB variant uses the bidirectional trace build-
ing approach for finding traces. In the TraceRA noSpillShar-
ing configuration spill information sharing is turned off. For
the TraceRA noHints noSpillSharing variant we also disabled
inter-trace hints (see Section 4).

name iterations

avrora 10
batik 40
fop 40
h2 20

jython 40
luindex 15
lusearch 40
pmd 30

sunflow 30
tomcat 50

tradebeans 20
tradesoap 15
xalan 20

(a) DaCapo

name iterations

actors 10
apparat 5
factorie 5
kiama 40
scalac 20

scaladoc 15
scalap 120

scalariform 30
scalatest 50
scalaxb 35
specs 20
tmt 12

(b) Scala DaCapo

Table 3: Benchmark Iterations

DaCapo Scala-DaCapo SPECjbb2015 SPECjvm2008

60%

70%

80%

90%

100%

110%

120%

130%

60%

70%

80%

90%

100%

110%

120%

130%

S
P
A
R
C

A
M
D
64

S
co

re
 re

la
tiv

e 
to

 L
S

R
A

 m
ea

n
(h

ig
he

r i
s 

be
tte

r)

LSRA TraceRA

Figure 6: Performance (Composite)

5.1 Performance
For this evaluation we are interested in peak performance

of long-running applications. Figure 6 depicts the distribu-
tion of the individual benchmark results for every suite. It
contains all normalized data points from the different bench-
mark suites.

DaCapo.
The DaCapo benchmarking harness executes every bench-

mark a certain number of times in a single VM. The iteration
count is used to warm up the virtual machine, i.e., to com-
pile all important methods. It depends on the size of the
benchmark. For all benchmarks we ran a sufficient number
of warmup iterations (in order to get all important methods
compiled) before we measured the performance. The itera-
tions used for this experiment are listed in Table 3(a). In
Figure 6 and Figure 7 we present the reciprocal of the run
time, which is the number reported by the DaCapo (and



Scala-DaCapo) harness. This way the value can be more
easily compared to the results of the SPEC benchmarks.
The reported number is the score of the last iteration.

The results for the DaCapo benchmark suite on AMD64
are depicted in Figure 7. The composite column depicts all
normalized data points of a suite. On average, Trace Reg-
ister Allocation is about 1% slower then Linear Scan. The
figure clearly shows that inter-trace hints are the most influ-
ential optimization. It also suggests that the unidirectional
trace builder performs better than the bidirectional variant.
The sunflow benchmark is interesting since it is the only
one which is more than 5% slower on average (Figure 7).
We will discuss the reasons for that at the end of the eval-
uation section. For SPARC the performance numbers are
similar: Trace Register Allocation is about 1% slower than
Linear Scan, on average. Also for sunflow, the performance
difference is only 1% here.

Scala-DaCapo.
The Scala-DaCapo benchmarking harness is similar to

the one of DaCapo. Again, we ran a sufficient number of
warmup iterations before we measured the peak performance
(Table 3(b)). For the Scala-DaCapo benchmarks Trace Reg-
ister Allocator achieves results in the same range as Linear
Scan, both on AMD64 and on SPARC.

SPECjvm2008.
The harness for SPECjvm2008 differs from DaCapo as it

is time-based, not iteration-based. It warms up the bench-
mark for 120s followed by 240s interval for the actual mea-
surement. During these time intervals the benchmark is exe-
cuted repeatedly. The harness reports a score value in oper-
ations per minute. The results are presented in Figure 6. On
average we are as close as 3% to the Linear Scan performance
on AM64. There is measurable difference in performance on
SPARC.

SPECjbb2015.
In contrast to the other benchmarking suites, SPEC-

jbb2015 does not consist of multiple independent bench-
marks but executes a single business application. The har-
ness provides two metrics, the critical score which relates
to response time and the max value which measures through-
put. The results are depicted in Figure 6 and show that we
are on average about 3% slower on AMD64 and 1% slower
on SPARC respectively.

Known Issues.
One issue with our approach are spill moves that are intro-

duced in a side-trace of a loop. Figure 8 shows an example:
In trace T1 the allocator is able to move the spill code for
x out of the loop (i.e., from B4 to B1). In trace T2, when
spilling y, we cannot do this since the block entering the
loop (B1) is not part of T2. This means that we need to
execute the spill move inside the loop, every time we enter
B6. Doing the spill also in B1 would be preferable, but since
allocation of traces is decoupled, this is not possible. (Note
that in any case, we cannot remove the load of y at the end
of B6.)

The effect of this issue can be seen in the results of the
sunflow benchmark in Figure 7. The hot loop of the bench-
mark contains a swich statement where in every branch the

register pressure is higher than the number of available reg-
isters. The Trace Register Allocator creates one long trace
containing the loop header and the most likely branch of the
switch. In this trace the spills can be moved out of the loop.
For the other branches, separate traces are created where
the spill moves cannot be lifted out of the loop. Our investi-
gation showed that the number of executed moves is higher
with Trace Register Allocator than with Linear Scan.

To solve this problem, we could conservatively insert spill
moves in the trace with the loop header and remove them
later if they turn out to be superfluous. Implementation and
evaluation of this optimization remains future work.

5.2 Compile Time
Besides performance, compile time is also important for

a dynamic compiler. Figure 9 shows the compile time per
(LIR) instruction for DaCapo on AMD64 (R2 = 0.97 [36]).
We present the time required for the complete allocation
stage including trace building, the global liveness analysis
for our IR extension and register allocation. In our exper-
iment 75% of time is spent on (local) register allocation of
traces. The rest is consumed by global phases, i.e., trace
building, global liveness analysis and global move resolution.
The results show that our implementation of Trace Regis-
ter Allocation exhibits a linear behavior. Improving compile
time was not yet our focus and remains future work. Cur-
rently, our prototypical implementation is on average 35%
slower than the Linear Scan algorithm that is used by Graal.
Concrete ideas for improving the compile time include, for
example, reusing data structures to avoid reallocations for
every trace.

Note that the trace-based approach has two advantages
over other approaches regarding compilation time. First, the
lifetime information is simpler since we do not need to take
care of lifetime holes. Second, we can use faster algorithms
for unimportant traces.

Trace Register Allocation is already 10% faster than Lin-
ear Scan on the jython benchmark from the DaCapo suite.
In this case Linear Scan shows a non-linear compile time
behavior.

6. RELATED WORK
Trace Register Allocation is related to three separate areas

of research, namely trace scheduling, trace compilation and,
of course, register allocation.

Trace Scheduling.
Fisher [37] introduced traces as compilation units for

instruction scheduling for Very Long Instruction Word
(VLIW) architectures. The idea is to reorder instructions
for increasing Instruction Level Parallelism (IPL). The Bull-
dog compiler by Ellis [23] and later Multiflow by Lowney et
al. [24] are popular implementations of this approach. Their
understanding of a trace being a part of the control-flow
graph coincides with our use of the term trace. Many con-
cepts developed in that field are similar to Trace Register
Allocation such as the trace building or the sharing of in-
formation across trace boundaries. They also do register
allocation but it is a by-product of the instruction schedul-
ing algorithm while for us it is the main focus.



composite avrora batik fop h2 jython luindex lusearch pmd sunflow tomcat tradebeans tradesoap xalan

80%

85%

90%

95%

100%

105%

S
co

re
 re

la
tiv

e 
to

 L
S

R
A

 m
ea

n
(h

ig
he

r i
s 

be
tte

r)

LSRA TraceRA TraceRA BiTB TraceRA noSpillSharing TraceRA noHints noSpillSharing

Figure 7: Performance DaCapo (AMD64)

T1 T2

x← · · ·
y ← · · ·
spill(x)

· · ·

· · ·

spill(x)

. . .

. . .

spill(y)

. . .

load(y)

· · ·

B1

B2

B3

B4

B5

B6

x y

x y

Figure 8: Spilling in Side-traces of a Loop

Trace compilation.
Trace compilation is a dynamic compilation approach that

uses traces as the compilation unit for generating machine
code. Trace-based compilers do not depend on the structure
of the program to be compiled (e.g., on its methods, condi-
tional statements, or loops) but rather find their compilation
units by recording traces during the execution of methods
in an interpreter or in code that was produced by a baseline
compiler.

Dynamo by Bala et al. [38] was the first widely known
system using this approach for dynamic translation of
compiled binaries. Gal, Probst, and Franz proposed the
HotPathVM [39], a trace-based Java VM for resource-
constrained devices. The HotPathVM performs trace merg-
ing where different traces are stitched together. When com-
piling the child trace they initialize the state of the variables
to the mapping present at the end of the parent trace. The
idea is similar to our inter-trace hints. Following up on their
previous work, Gal et al. applied their trace-based approach

0

250

500

750

1000

1250

0 10000 20000 30000 40000 50000
LIR Instructions

C
om

pi
le

 ti
m

e 
in

 [m
s]

Figure 9: Compile time per LIR Instruction –
500 slowest methods of 74160 (DaCapo on AMD64)

to JIT compilation of dynamically-typed languages. The re-
sult was TraceMonkey [40], a tracing VM for JavaScript that
was used in Mozilla’s Firefox Browser. Bolz et al. used trace-
compilation for obtaining efficient bytecode interpreters that
were implemented in the PyPy language implementation
framework [41]. They applied the tracing compiler not to
the user program but to the interpreter that was written by
the language implementer. This approach is also referred
to as meta-tracing. Häubl and Mössenböck modified the
HotSpot Client Compiler in order to perform trace-based
compilation [42]. Especially the context-sensitive inlining of
traces [43] showed significant improvements.

A difference between trace compilation and our approach
is that, in general, traces have no side entries, i.e., a trace is
always entered through its head (although there are excep-
tions [42]). In the context of trace compilation, code pieces
(e.g. a basic-block or an instruction) can usually occur in
multiple traces, i.e. there is some kind of code duplication.
This is not the case in our implementation.

Although register allocation is not the focus of trace com-
pilation, allocation strategies used in this area can also be
applied to Trace Register Allocation. We assume that fur-
ther research of trace-based register allocation will impact
trace-based compilation and vice versa.



Register Allocation.
Poletto and Sarkar introduced Linear Scan [2] as a simple

and fast method for global register allocation. In their ap-
proach, intervals are not split, so either the whole interval is
on the stack or in a register. Also, they do not support life-
time holes. Both decisions make the algorithm simpler but
at the cost of allocation quality. The Second-chance Bin-
packing algorithm by Traub et al. [8] added interval splitting
and lifetime holes. Wimmer and Mössenböck improved this
approach and suggested optimized spilling and splitting [3].
The SSA adoption of this work by Wimmer et al. [4] is the
allocator currently used by Graal5 and the baseline we com-
pare against. The trace-based Linear Scan Algorithm used
by our approach is also derived from this work. Since traces
do not contain control-flow we do not need to maintain life-
time holes. Also, due to our intermediate representation, we
can do the lifetime analysis in a single backwards pass.

Callahan and Koblenz proposed Hierarchical Graph Col-
oring as a technique to minimize the number of dynamically
executed spills. Their approach shares some similarities with
our Trace Register Allocator. They also divide the control-
flow graph in what they call tiles and (partially) solve the
register allocation problem for each of them. The differ-
ence to our approach is that tiles are not independent but
organized in a hierarchical tree. Allocation starts at the
innermost tile (the leaf of the tree). Once all children are
processed the parent tile uses the information of its children
to continue. It is also worth noting that the algorithm does
not assign registers in the first pass but uses pseudo registers
to record the requirements of a tile. In a second top-down
pass physical register are assigned and spill code is inserted if
needed. Furthermore, Callahan and Koblenz use the graph
coloring algorithm for allocating a tile.

The motivation for Register Allocation based on Graph-
Fusion by Lueh et al. [45] is similar to Callahan and Koblenz,
namely to minimize the number of dynamically executed
spill instructions. Their allocator works on regions of the
control-flow, where a region can be a basic block, a loop-nest,
a superblocks [46], or other combinations of basic blocks.
They build up the interference graph for each part and fuse
together graphs of connected regions to build up the graph
for the complete compilation unit. Their approach differs
from ours as it is a global approach where decisions are made
on a global basis. In contrast to that, we solve the problem
locally and independently for each trace. Furthermore, the
graph fusion approach uses the interference graph as the sin-
gle model for liveness, whereas the Trace Register Allocator
can use a different representation for every trace.

Koes and Goldstein proposed a Global Progressive Reg-
ister Allocator [47] using multi-commodity network flow
(MCNF). They first formulate a solution for the local prob-
lem (i.e. for a basic block) and later extend it to the global
case. Later, Koes and Goldstein proposed an interesting
extension where they used traces instead of basic blocks as
the scope for the local problem, which further improved the
quality and the speed of their approach [48]. To the best
of our knowledge, they did not further investigate this idea
and there are no scientific publications about it.

5Although, the implementation in Graal does not yet use
the optimized lifetime analysis proposed in by Wimmer et
al. [4].

Intermediate Representation.
An inspiration for our intermediate representation was

the Static Single Information (SSI) form proposed by Ana-
nian [49] and later refined by others [50, 51]. SSI is an
extension of the SSA form that not only has ϕ functions at
control-flow joins but also σ (in some work called π) func-
tions at control-flow splits. Pereira and Palsberg exploited
a variant of the SSI form in their register allocator based
on puzzle-solving. Although we borrowed ideas from the SSI
representation, our IR is strictly speaking not in (pruned)
SSI form.

Lozano et al. introduced Linear Static Single Assignment
(LSSA) form as an intermediate representation for their
Constraint-based Register Allocation and Instruction Selec-
tion approach [53]. The in- and out-delimiters in LSSA form
are similar to our representation. In our approach, however,
they are not only used to mark lifetimes of variables but also
to support inter-trace data-flow resolution.

7. CONCLUSION AND OUTLOOK

7.1 Future Work
In this paper we listed open issues such as spilling in a

loop side-trace. Also, our current implementation stores the
live set information for every block, although we only really
need it for inter-trace edges. In the short term, our future
work will focus on these issues.

Our long term research vision, based on Trace Register
Allocation as presented in this paper, will focus on the fol-
lowing aspects: First, we want to experiment with using
different algorithms for different traces. For example, a fast
algorithm with good compilation speed might be preferable
for unimportant traces at the cost of code quality. On the
other hand, we plan to use algorithms that find the opti-
mal or near to optimal solution for important traces. Sec-
ond, Trace Register Allocation reduces the problem size by
splitting it into distinct traces, which can be processed indi-
vidually. Independent traces allow register allocation of one
compilation unit in parallel, executed by multiple threads.
Concurrent register allocation would potentially improve the
throughput and compile-time significantly.

7.2 Summary
We presented an implementation of a novel register alloca-

tion approach, called Trace Register Allocation. Our results
suggest that a global view on the register allocation problem
is not strictly required to find solutions that are comparable
to those of register allocators used in JIT compilers today.

Our non-global approach is based on traces, i.e., on lin-
ear segments of code. Each of these traces can be processed
independently, possibly using different register allocation al-
gorithms. The problem that has to be solved by these al-
gorithms is simpler than the general problem of register al-
location. Hence, trace-based register allocation algorithms
can be simplified compared to their global counterparts.

Our results lay the foundation for future research in this
new area of trace-based register allocation. We believe that
the flexibility of our approach can push the boundaries of
current register allocation techniques and can have an im-
pact on both research and production compilers.



8. ACKNOWLEDGEMENTS
We thank all members of the Graal community, the Vir-

tual Machine Research Group at Oracle Labs and the Insti-
tute for System Software at the Johannes Kepler University
Linz for their support and contributions. Special thanks
go to Gilles Duboscq, Stefan Marr, Tom Rodriguez, Roland
Schatz and Christian Wimmer. The authors from Johannes
Kepler University are funded in part by a research grant
from Oracle.

9. REFERENCES

[1] Preston Briggs, Keith D. Cooper, and Linda Torczon.
“Improvements to graph coloring register allocation”.
In: TOPLAS’94 (1994). doi: 10.1145/177492.177575.

[2] Massimiliano Poletto and Vivek Sarkar. “Linear Scan
Register Allocation”. In: TOPLAS’99 (1999). doi: 10.
1145/330249.330250.

[3] Christian Wimmer and Hanspeter Mössenböck. “Op-
timized Interval Splitting in a Linear Scan Register
Allocator”. In: VEE’05. ACM, 2005. doi: 10 . 1145/
1064979.1064998.

[4] Christian Wimmer and Michael Franz. “Linear Scan
Register Allocation on SSA Form”. In: CGO’10. ACM,
2010. doi: 10.1145/1772954.1772979.

[5] Gregory J Chaitin et al. “Register Allocation via Col-
oring”. In: Computer languages (1981). doi: 10.1016/
0096-0551(81)90048-5.

[6] Michael D. Smith, Norman Ramsey, and Glenn Hol-
loway.“A generalized algorithm for graph-coloring reg-
ister allocation”. In: SIGPLAN Not. (2004). doi: 10.
1145/996893.996875.

[7] Lal George and Andrew W. Appel. “Iterated register
coalescing”. In: TOPLAS’96 (1996). doi: 10 . 1145 /
229542.229546.

[8] Omri Traub, Glenn Holloway, and Michael D. Smith.
“Quality and Speed in Linear-scan Register Alloca-
tion”. In: SIGPLAN Not. (1998). doi: 10.1145/277652.
277714.

[9] Thomas Kotzmann et al. “Design of the Java
HotSpot™client compiler for Java 6”. In: TACO’08
(2008). doi: 10.1145/1369396.1370017.

[10] Matthew Arnold et al. “Adaptive Optimization in the
Jalapeño JVM”. In: SIGPLAN Not. (2000). doi: 10.
1145/1988042.1988048.

[11] Chris Lattner and Vikram Adve. “LLVM: A Compi-
lation Framework for Lifelong Program Analysis &
Transformation”. In: CGO’04. IEEE Computer Soci-
ety, 2004. doi: 10.1109/CGO.2004.1281665.

[12] Josef Eisl. “Trace Register Allocation”. In: SPLASH
Companion 2015. ACM, 2015. doi: 10.1145/2814189.
2814199.

[13] Graal Project. OpenJDK Community. url: http ://
openjdk.java.net/projects/graal/.

[14] Gilles Duboscq et al. “An Intermediate Representa-
tion for Speculative Optimizations in a Dynamic Com-
piler”. In: VMIL’13 (2013). doi: 10 . 1145/2542142 .
2542143.

[15] Lukas Stadler et al. “An Experimental Study of the In-
fluence of Dynamic Compiler Optimizations on Scala
Performance”. In: SCALA’13. ACM, 2013. doi: 10 .
1145/2489837.2489846.

[16] Gilles Duboscq, Thomas Würthinger, and
Hanspeter Mössenböck. “Speculation without regret”.
In: PPPJ’14 (2014). doi: 10.1145/2647508.2647521.

[17] Lukas Stadler, Thomas Würthinger, and Hanspeter
Mössenböck. “Partial Escape Analysis and Scalar Re-
placement for Java”. In: CGO ’14. ACM, 2014. doi:
10.1145/2544137.2544157.

[18] Doug Simon et al. “Snippets: Taking the High Road
to a Low Level”. In: TACO’15 (2015). doi: 10.1145/
2764907.

[19] Oracle Corporation. Java SE HotSpot at a Glance.
url: http://www.oracle.com/technetwork/articles/
javase/index-jsp-136373.html (visited on 05/06/2016).

[20] Ron Cytron et al. “Efficiently Computing Static Sin-
gle Assignment Form and the Control Dependence
Graph”. In: ACM Trans. Program. Lang. Syst. (1991).
doi: 10.1145/115372.115320.

[21] S. M. Blackburn et al.“The DaCapo Benchmarks: Java
Benchmarking Development and Analysis”. In: OOP-
SLA’06. ACM Press, 2006. doi: 10 . 1145 / 1167473 .
1167488.

[22] Michael Bebenita et al. “Trace-based compilation
in execution environments without interpreters”. In:
PPPJ’10 (2010). doi: 10.1145/1852761.1852771.

[23] John R. Ellis. “Bulldog: A Compiler for VLIW Archi-
tectures”. PhD thesis. Yale University, 1985.

[24] P. Geoffrey Lowney et al. “The Multiflow Trace
Scheduling Compiler”. In: Journal of Supercomputing
(1993). doi: 10.1007/BF01205182.

[25] Michael Paleczny, Christopher Vick, and Cliff Click.
“The Java HotSpot™ Server Compiler”. In: JVM’01.
USENIX Association, 2001. url: https://www.usenix.
org / legacy / events / jvm01 / full papers / paleczny /
paleczny.pdf.

[26] JEP 243: Java-Level JVM Compiler Interface. 2014.
url: http://openjdk. java.net/jeps/243 (visited on
05/06/2016).

[27] DaCapo Project. The DaCapo Benchmark Suite.
2012. url: http : / / dacapobench . org/ (visited on
05/26/2016).

[28] Andreas Sewe et al. “Da capo con scala”. In: OOP-
SLA’11 (2011). doi: 10.1145/2048066.2048118.

[29] SPECjvm2008: Java Virtual Machine Benchmark.
url: https : / /www . spec . org / jvm2008/ (visited on
06/15/2015).

[30] SPECjbb2015: Java Server Benchmark. url: https://
www.spec.org/jbb2015/ (visited on 05/25/2016).

[31] Oracle Corporation. Sun Server X3-2. 2013. url: http:
/ /www .oracle . com/us/products / servers - storage /
servers/x86/sun-server-x3-2-ds-1683091.pdf (visited
on 05/25/2016).

[32] Linux Containers. url: http://linuxcontainers .org/
(visited on 05/26/2016).

https://doi.org/10.1145/177492.177575
https://doi.org/10.1145/330249.330250
https://doi.org/10.1145/330249.330250
https://doi.org/10.1145/1064979.1064998
https://doi.org/10.1145/1064979.1064998
https://doi.org/10.1145/1772954.1772979
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1145/996893.996875
https://doi.org/10.1145/996893.996875
https://doi.org/10.1145/229542.229546
https://doi.org/10.1145/229542.229546
https://doi.org/10.1145/277652.277714
https://doi.org/10.1145/277652.277714
https://doi.org/10.1145/1369396.1370017
https://doi.org/10.1145/1988042.1988048
https://doi.org/10.1145/1988042.1988048
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/2814189.2814199
https://doi.org/10.1145/2814189.2814199
http://openjdk.java.net/projects/graal/
http://openjdk.java.net/projects/graal/
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/2489837.2489846
https://doi.org/10.1145/2489837.2489846
https://doi.org/10.1145/2647508.2647521
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/2764907
https://doi.org/10.1145/2764907
http://www.oracle.com/technetwork/articles/javase/index-jsp-136373.html
http://www.oracle.com/technetwork/articles/javase/index-jsp-136373.html
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1852761.1852771
https://doi.org/10.1007/BF01205182
https://www.usenix.org/legacy/events/jvm01/full_papers/paleczny/paleczny.pdf
https://www.usenix.org/legacy/events/jvm01/full_papers/paleczny/paleczny.pdf
https://www.usenix.org/legacy/events/jvm01/full_papers/paleczny/paleczny.pdf
http://openjdk.java.net/jeps/243
http://dacapobench.org/
https://doi.org/10.1145/2048066.2048118
https://www.spec.org/jvm2008/
https://www.spec.org/jbb2015/
https://www.spec.org/jbb2015/
http://www.oracle.com/us/products/servers-storage/servers/x86/sun-server-x3-2-ds-1683091.pdf
http://www.oracle.com/us/products/servers-storage/servers/x86/sun-server-x3-2-ds-1683091.pdf
http://www.oracle.com/us/products/servers-storage/servers/x86/sun-server-x3-2-ds-1683091.pdf
http://linuxcontainers.org/


[33] Oracle Corporation. SPARC T5-2 Server. 2013. url:
http://www.oracle.com/us/products/servers-storage/
servers / sparc / oracle - sparc / t5 - 2 / sparc - t5 - 2 - ds -
1922871.pdf (visited on 05/25/2016).

[34] Oracle Corporation. Introduction to Oracle Solaris
Zones. 2014. url: http://docs.oracle.com/cd/E36784
01/pdf/E36848.pdf (visited on 05/26/2016).

[35] John W. Tukey. Exploratory data analysis. Reading,
Mass., 1977.

[36] John M. Chambers. Statistical Models in S. CRC
Press, Inc., 1991.

[37] Joseph Allen Fisher. “Trace Scheduling: A Technique
for Global Microcode Compaction”. In: Computers,
IEEE Transactions on Computers (1981). doi: 10 .
1109/TC.1981.1675827.

[38] Vasanth Bala, Evelyn Duesterwald, and Sanjeev
Banerjia. “Dynamo: A Transparent Dynamic Opti-
mization System”. In: SIGPLAN Not. (2000). doi: 10.
1145/358438.349303.

[39] Andreas Gal, Christian W. Probst, and Michael Franz.
“HotpathVM: An Effective JIT Compiler for Resource-
constrained Devices”. In: VEE’06. ACM, 2006. doi:
10.1145/1134760.1134780.

[40] Andreas Gal et al. “Trace-based Just-in-Time Type
Specialization for Dynamic Languages”. In: PLDI’09.
ACM, 2009. doi: 10.1145/1542476.1542528.

[41] Carl Friedrich Bolz et al. “Tracing the meta-level”.
In: ICOOOLPS’09 (2009). doi: 10 . 1145 / 1565824 .
1565827.

[42] Christian Häubl and Hanspeter Mössenböck. “Trace-
based compilation for the Java HotSpot virtual ma-
chine”. In: PPPJ’11 (2011). doi: 10 .1145/2093157 .
2093176.

[43] Christian Häubl, Christian Wimmer, and Hanspeter
Mössenböck. “Context-sensitive trace inlining for
Java”. In: Computer Languages, Systems & Structures
(2013). doi: 10.1016/j.cl.2013.04.002.

[44] David Callahan and Brian Koblenz. “Register Alloca-
tion via Hierarchical Graph Coloring”. In: SIGPLAN
Not. (1991). doi: 10.1145/113446.113462.

[45] Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-
Tabatabai. “Global register allocation based on graph
fusion”. In: Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1997. doi: 10 . 1007 /
BFb0017257.

[46] Wen -Mei W. Hwu et al. “The superblock: An effective
technique for VLIW and superscalar compilation”. In:
The Journal of Supercomputing (1993). doi: 10.1007/
bf01205185.

[47] David Ryan Koes and Seth Copen Goldstein.“A global
progressive register allocator”. In: PLDI’06 (2006).
doi: 10.1145/1133981.1134006.

[48] David Ryan Koes and Seth Copen Goldstein. A better
global progressive register allocator. 2006. url: http://
www.cs.cmu.edu/˜dkoes/research/lctes06 tracealloc.
pdf.

[49] C. Scott Ananian. “The Static Single Information
Form”. MA thesis. Princeton University, 1999. url:
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-
LCS-TR-801.pdf.

[50] Jeremy Singer. Static program analysis based on virtual
register renaming. Tech. rep. University of Cambridge,
2006. url: https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-660.pdf.

[51] B. Boissinot et al. SSI Properties Revisited. Tech. rep.
ENS-Lyon, 2009. url: https : / / hal . inria . fr / inria -
00404236/file/bboissin-ssi-RR.pdf.

[52] Fernando Magno Quintão Pereira and Jens Palsberg.
“Register allocation by puzzle solving”. In: PLDI’08
(2008). doi: 10.1145/1375581.1375609.

[53] Roberto Castañeda Lozano et al. “Constraint-Based
Register Allocation and Instruction Scheduling”. In:
CP’12 (2012). doi: 10.1007/978-3-642-33558-7 54.

http://www.oracle.com/us/products/servers-storage/servers/sparc/oracle-sparc/t5-2/sparc-t5-2-ds-1922871.pdf
http://www.oracle.com/us/products/servers-storage/servers/sparc/oracle-sparc/t5-2/sparc-t5-2-ds-1922871.pdf
http://www.oracle.com/us/products/servers-storage/servers/sparc/oracle-sparc/t5-2/sparc-t5-2-ds-1922871.pdf
http://docs.oracle.com/cd/E36784_01/pdf/E36848.pdf
http://docs.oracle.com/cd/E36784_01/pdf/E36848.pdf
https://doi.org/10.1109/TC.1981.1675827
https://doi.org/10.1109/TC.1981.1675827
https://doi.org/10.1145/358438.349303
https://doi.org/10.1145/358438.349303
https://doi.org/10.1145/1134760.1134780
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1145/2093157.2093176
https://doi.org/10.1145/2093157.2093176
https://doi.org/10.1016/j.cl.2013.04.002
https://doi.org/10.1145/113446.113462
https://doi.org/10.1007/BFb0017257
https://doi.org/10.1007/BFb0017257
https://doi.org/10.1007/bf01205185
https://doi.org/10.1007/bf01205185
https://doi.org/10.1145/1133981.1134006
http://www.cs.cmu.edu/~dkoes/research/lctes06_tracealloc.pdf
http://www.cs.cmu.edu/~dkoes/research/lctes06_tracealloc.pdf
http://www.cs.cmu.edu/~dkoes/research/lctes06_tracealloc.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-801.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-801.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-660.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-660.pdf
https://hal.inria.fr/inria-00404236/file/bboissin-ssi-RR.pdf
https://hal.inria.fr/inria-00404236/file/bboissin-ssi-RR.pdf
https://doi.org/10.1145/1375581.1375609
https://doi.org/10.1007/978-3-642-33558-7_54

	1 Introduction
	2 System Overview
	3 Trace Register Allocation
	3.1 Overview
	3.2 Trace Building
	3.3 Intermediate Representation
	3.4 Allocating Registers for a Trace
	3.5 Data-flow Resolution

	4 Inter-trace Optimizations
	4.1 Inter-trace Hints
	4.2 Spill Information Sharing

	5 Evaluation
	5.1 Performance
	5.2 Compile Time

	6 Related Work
	7 Conclusion and Outlook
	7.1 Future Work
	7.2 Summary

	8 Acknowledgements
	9 References

