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Abstract

We are in the multi-core era. Dynamically-typed languages

are in widespread use, but their support for multithreading

still lags behind. One of the reasons is that the sophisticated

techniques they use to efficiently represent their dynamic ob-

ject models are often unsafe in multithreaded environments.

This paper defines safety requirements for dynamic object

models in multithreaded environments. Based on these re-

quirements, a language-agnostic and thread-safe object model

is designed that maintains the efficiency of sequential ap-

proaches. This is achieved by ensuring that field reads do

not require synchronization and field updates only need to

synchronize on objects shared between threads.

Basing our work on JRuby+Truffle, we show that our

safe object model has zero overhead on peak performance

for thread-local objects and only 3% average overhead on

parallel benchmarks where field updates require synchro-

nization. Thus, it can be a foundation for safe and efficient

multithreaded VMs for a wide range of dynamic languages.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features—Classes and

objects, Dynamic storage management; D.3.4 [Program-

ming Languages]: Processors—Run-time environments, Op-

timization

Keywords Dynamically-sized objects, Dynamic languages,

Concurrency, Virtual Machine, Java, Truffle, Graal, Ruby

1. Introduction

Dynamically-typed languages such as JavaScript, Ruby or

Python are widely used because of their flexibility, proto-

typing facilities, and expressive power. However, a large

majority of dynamic language implementations does not

yet provide good support for multithreading. The increas-

ing popularity of dynamically-typed languages has led to a

need for efficient language runtimes, which in turn led to

the creation of alternative implementations with notable ex-

amples existing for JavaScript (SpiderMonkey [22], V8 [11],

Nashorn [24]), for Python (PyPy [3], Jython [14]), as well as

for Ruby (JRuby [25], Rubinius [28]). However, most of the

efforts have aimed at improving sequential performance. One

of the key optimizations is the in-memory representation of

objects based on SELF’s maps [5] or similar approaches [35].

By using maps, the runtime systems avoid using expensive

dictionary lookups in favor of a more efficient representation

of object layouts, leading to several benefits when combined

with just-in-time compilation techniques, such as polymor-

phic inline caches [12].

Unfortunately, the focus on sequential performance has re-

sulted in optimizations that are not safe for concurrent execu-

tion, and many language implementations have minimal or no

support for parallel execution. The most popular implementa-

tions of Ruby and Python still limit parallelism using a global

interpreter lock, while prominent JavaScript engines support

only share-nothing models via memory isolation. This lim-

its the support for concurrency and parallelism in modern

multi-core machines, and leaves many potential benefits of

using multithreading out of reach for dynamic languages.

Implementations such as Nashorn, Rubinius, Jython, and

JRuby have tried to address this issue with support for mul-

tithreaded execution. Unfortunately, Nashorn and Rubinius

provide object representations without any safety guarantees

when accessing an object from multiple threads. Other en-
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gines, such as Jython and JRuby, trade performance for safety

and synchronize on every object write, leading to consider-

able slowdowns even for single-threaded applications.

In this paper, we introduce a novel technique to overcome

the limitations of existing language runtimes. Our approach

enables zero-overhead access on objects that are not shared

between threads, while still ensuring safety when concurrent

accesses occur. Safety is ensured without introducing any

overhead for single-threaded programs, and with only 3%

overhead on average for parallel programs. With this minimal

performance cost, our approach guarantees that the object

representation does not cause lost field definitions and up-

dates, as well as out-of-thin-air values (cf. Section 3). These

guarantees are of high practical value, because such problems

can happen inside existing language runtimes despite applica-

tion programs being seemingly data race free. Thus, arguing

that an application should use proper synchronization would

be insufficient since the concurrency issues are caused by the

actual implementation of a runtime’s object representation.

Contributions To summarize, this paper contributes:

• a safety definition for adaptable object representations for

multithreaded environments,

• a thread-safe object storage model to make SELF’s maps

and similar object models safe for concurrent access,

• an approach to provide safety efficiently by only synchro-

nizing on objects that are accessible by multiple threads,

• a structural optimization to efficiently update an object

graph of bounded size by speculating on its structure,

• and an implementation of the optimizations and model for

JRuby+Truffle, a state-of-the-art language runtime using

the Truffle object storage model [35].

2. Background

This section discusses SELF’s maps [5] and Truffle’s object

storage model [35, 36] to provide sufficient background

on the object representation approaches used in dynamic

language implementations.

2.1 SELF Maps

Dynamic languages often provide object models with features

similar to dictionaries, allowing developers to dynamically

add and remove fields. Despite providing a very convenient

programming abstraction, standard dictionary implementa-

tions such as hash tables are a suboptimal run-time represen-

tation for objects because they incur both performance and

memory overhead. Accessing a hash table requires signifi-

cantly more operations than accessing a field in a fixed object

layout, as used by Java or Smalltalk. Moreover, the absence

of static type information in dynamically-typed languages

can cause additional overhead for handling primitive values

such as integers and floats.

The SELF programming language was the first to solve

these issues by introducing maps [5]. With maps, the runtime

system collects metadata describing how object fields are

used by an application. Based on such metadata, a fixed

object representation for an object can be determined, which

enables optimal direct field access via a simple offset instead

of a complex and expensive hash-based lookup. Since the

language supports dynamic changes to an object’s fields, this

fixed object representation is an optimistic, i.e., speculative,

optimization. To avoid breaking the language’s semantics,

object accesses thus still need an additional step that confirms

that the object has a specific map describing the current set

of object fields. Thus, a field access first checks whether the

object’s map is the map that was used in the optimized code.

If this test succeeds, as in most cases where the map at a

given code location is stable, the read or write instruction can

be performed directly. The read or write instruction accesses

the field with a precomputed offset, which is recorded in the

map, and can be inlined in the optimized machine code.

Verifying that a given object matches a given map is

implemented with a simple pointer comparison, which can

typically be moved out of loops and other performance-

critical code. This approach has proven to be very efficient in

SELF [5] and has inspired many language implementations

(e.g., PyPy [2], and Google’s V8 [31]).

2.2 The Truffle Object Storage Model

Truffle [36] is a language implementation framework for the

Java Virtual Machine (JVM). It is based on the notion of

self-optimizing AST interpreters that can be compiled to

highly-optimized machine code by the Graal compiler [34],

which uses partial evaluation. Language implementations

using Truffle include JavaScript, R, Smalltalk, and Ruby [26].

The Truffle object storage model [35] is part of the Truffle

framework, and can be used by language implementers to

model dynamically-typed objects. The design of the object

model is inspired by SELF’s maps. Additionally, it introduces

specializations for fields based on types. These type special-

izations avoid boxing of primitive types since the Java Virtual

Machine imposes a strict distinction between primitive and

reference types. The Truffle object model represents an arbi-

trary number of fields by combining a small number of fixed

field locations with extension arrays for additional fields.

Figure 1 depicts the DynamicObject class that provides

the foundation for Truffle’s object model. Consider an object

objA with a field f in a dynamic language. This object

is represented by an instance of DynamicObject. It has a

specific shape that contains the metadata about field types

and how to map field f to a concrete field of DynamicObject.

As a usage example, if f is only seen to contain long values,

it is mapped to a free primN storage location. If all of them

are in use, f is mapped to an index in the primExt extension

array instead.

When objA.f is assigned a value of a different type than

its current one (e.g., changing from long to Object), the
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class DynamicObject {

// maps fields to storage locations

Shape shape;

// an object’s storage locations

long prim1; long prim2; long prim3;

Object object1;

Object object2;

Object object3;

Object object4;

// stores further fields

long[] primExt;

Object[] objectExt;

}

int readCachedIntLocation(DynamicObject obj) {

// shape check

if (obj.shape == cachedShape) {

// this accesses ‘obj.prim1’

return cachedLocation.getInt(obj);

} else { /* Deoptimize */ }

}

Figure 1. Sketch of Truffle’s object storage model and a

method reading a field.

previously allocated primN storage location for the field f is

no longer appropriate. Thus, the assignment operation needs

to determine a shape that maps f to a storage location that

can contain objects. In case objA already has four other fields

that contain objects, f needs to be stored in the objectExt

extension array. Thus, the write to f will cause an update

of the shape and might require the allocation of a new

objectExt array to hold the additional storage location.

With the Truffle object storage model, objects of dynamic

languages can be represented efficiently on top of the JVM.

However, for small objects this model leads to a memory

overhead compared to an exact allocation. For dynamic

languages this is an appropriate design choice, because the

model provides the support for dynamically-changing object

shapes without requiring complex VM support.

Truffle offers a specialization mechanism by which the

AST of the executing program adapts to the observed input.

This mechanism allows Truffle to speculate on shapes and

types to optimize for the specific behavior a program exhibits.

3. Safety in Existing Object Storage Models

Most of the existing object storage models for dynamically-

typed languages are unsafe when used in combination with

multithreading. We consider an implementation as safe, if and

only if it does not expose properties of the implementation

in form of exceptions, crashes, or race conditions to the

language level. Thus, safety means that implementation

choices do not have visible consequences at the language

level. This includes the guarantee that the implementation

behaves safely even in the presence of data races or bugs in

the user program. In the following sections we detail the most

relevant safety issues of today’s object storage models.

3.1 State of the Art

Both SELF’s maps and the Truffle object storage model have

been engineered for single-threaded execution. As a result, in

some situations concurrent object accesses are unsafe. To the

best of our knowledge, only a few language implementations

use object representations that support accesses from multiple

threads while still providing safety guarantees. Examples are

Jython [14] and JRuby [25]. Since, for instance, JavaScript

does not provide shared memory concurrency, V8’s hidden

classes [31] as well as Nashorn’s PropertyMap [16] and Spi-

derMonkey’s object model [23] do not provide safety guar-

antees for shared-memory multithreading. While Nashorn is

not designed for multithreaded use, it provides a convenient

integration with Java that makes it easy to create threads

and to expose them to JavaScript code. When used in such

a way, programs can observe data races, exceptions, or even

crashes, because the JavaScript object representation itself is

not thread-safe [16]. We detail these issues in the remainder

of this section, in which we use the terminology of the Truffle

object storage model for consistency, but the same issues are

also present in SELF’s maps as well as in derived variants.

3.2 Lost Field Definitions

The first safety problem is that concurrent field definitions

for an object can lead to only one of the fields being added.

This is illustrated in Figure 2.

When two threads simultaneously add a new field to an

object, they cause shape transitions, i.e., the object’s internal

shape is replaced with a new one describing the new object

layout with the new field. In a concurrent scenario, only

one of the two fields may be added, and the definition of

the second field may be lost. When changing the shape, the

access to the shape pointer is normally unsynchronized to

avoid interfering with compiler optimizations. Thus, each

thread will add its field to a separate new shape, and will then

update the object’s shape pointer without synchronization.

This means that the first shape that was written into the object

may be lost.

From the application’s perspective, lost field definitions

are inherently unsafe and not acceptable, because they are

the result of an implementation choice. The program itself

might even be data race free, e.g., when the updates are

done to different fields. However, it can still suffer from such

implementation-level issues, which need to be avoided to

guarantee correct program execution. Therefore, concurrent

definitions must be synchronized to avoid losing fields.

3.3 Lost Field Updates

Another race condition arises when the storage allocated to a

given object needs to grow to accommodate new fields. Gen-
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obj = Foo.new # obj shape contains no fields

Thread.new {

# (1) Find shape with a: {a}

# (4) Update the object shape to {a}

obj.a = "a"

}

Thread.new {

# (2) Find shape with b: {b}

# (3) Update the object shape to {b}

obj.b = "b"

# (5) obj shape is {a}

obj.b # => nil (field b was lost)

}

Figure 2. The definition of field b can be lost when there

are concurrent field definitions. The comments indicate a

problematic interleaving of implementation-level operations

performed by the object model.

obj = Foo.new

obj.a = 1

Thread.new {

# (2) Write to old storage

obj.a = 2

# (4) Read from new storage

obj.a # => 1 (update was lost)

}

Thread.new {

# (1) Copy old storage [1], grow to [1,"b"]

# (3) Assign the new storage to obj

obj.b = "b"

}

Figure 3. The update to field a can be lost if growing the stor-

age is done concurrently with the field update. The comments

indicate a problematic interleaving of implementation-level

operations performed by the object model.

erally, objects can have an unbounded number of fields. Using

a fixed memory representation thus requires a mechanism to

extend the storage used for an object.

Assuming a state-of-the-art memory allocator, objects can-

not be grown in-place, since they are allocated consecutively

with only minimal fragmentation. Thus, an object cannot be

grown directly. Instead, one of its extension arrays is replaced

with a new array (cf. Section 2.2). This could cause updates

on the old array being lost since they are racing with installing

the new extension array. To avoid such lost updates on un-

related fields, which would not be data races based on the

program’s source code, proper synchronization is required.

This is illustrated in Figure 3.

obj = Foo.new

Thread.new {

# (3) Find shape with a: {a @ location 1}

# (4) Write "a" to location 1

# (5) Update obj shape to {a @ location 1}

obj.a = "a"

}

Thread.new {

# (1) Find shape with b: {b @ location 1}

# (2) Write "b" to location 1

# (6) Update obj shape to {b @ location 1}

obj.b = "b"

# (7) Read location 1

obj.b # => "a" (value of field a)

}

Figure 4. It is possible to get out-of-thin-air values when

reading a field. When reading field b, the value of field a is

returned instead, which was never assigned to field b in the

user program.

3.4 Out-Of-Thin-Air Values

In some unsafe object representations, it is possible to observe

out-of-thin-air values [17], i.e., values that are not derived

from a defined initial state or a previous field update.

This can happen if a memory location is reused for storing

another field value. For instance, if a field is removed and

its storage location is reused or if there are concurrent field

definitions which both use the same storage. We illustrate the

second case in Figure 4. When both fields are assigned the

same memory location, it is possible that the value of field b

is written first, then the update of field a completes (updating

the value and the shape), and then the update of field b assigns

the new shape. Any reader of field b will now read the value

that was assigned to field a. As with the previous issues, this

is a case that requires correct synchronization to avoid data

races that are not present in the original program.

4. A Thread-Safe Object Model

To design a thread-safe object model without sacrificing

single-threaded performance, a new approach to synchro-

nization is required. Specifically, a safe object model has to

prevent loss of field definitions, loss of updates, as well as

out-of-thin-air values. To prevent these three types of prob-

lems, the object model needs to guarantee that, even in the

presence of application-level data races,

• any read of an existing object field returns only values that

were previously assigned to that field,

• any read to non-existing object fields triggers the correct

semantics for handling an absent field such as returning a

default value, like nil, or throwing an exception.
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• a write to an object field is immediately visible in the

same thread. The visibility of the write in other threads

can require application-level synchronization.

Since current language implementations forgo thread-

safety for their object models because of performance con-

cerns, we strived for a synchronization strategy that provides

safety and efficiency as equally-important goals. We designed

a strategy that provides safety without requiring any synchro-

nization when reading fields. This is an important property

to avoid impeding compiler optimizations such as moving

loop-invariant reads out of loops or eliminating redundant

reads. Updates to objects or their structure, however, need syn-

chronization. To avoid incurring overhead on single-threaded

execution and objects that are only accessible by a single

thread, we use a synchronization strategy that is only applied

to objects that are shared between threads. More precisely,

our technique is capable of:

• reading object fields without any performance overhead,

regardless of the object being shared or not,

• enforcing synchronization on the internal object data

structures when an object is accessible by concurrent

threads, i.e., when one thread performs a field update

on a shared object.

This design is based on the intuition that objects that are

shared between threads are more likely to be read than writ-

ten. As a motivating example, Kalibera et al. [15, sec. 6.5]

show that reads are 28× more frequent than writes on shared

objects in concurrent DaCapo benchmarks. From a perfor-

mance perspective, multithreaded algorithms typically avoid

working with shared mutable state when possible, because it

introduces the potential for race conditions and contention,

i.e., sequential bottlenecks. Moreover, manipulating shared

mutable state safely requires synchronization and therefore

already has a significant overhead. Thus, designing a synchro-

nization strategy that has no cost for non-shared objects and

objects that are only read is likely to give good results for

common applications.

The remainder of this section presents the main elements

and requirements for this synchronization strategy.

4.1 Read-side Synchronization

As described in Section 3.4, reading fields from an object

that is concurrently updated from another thread is unsafe in

existing object models because the other thread might cause

a shape transition and as a result, the reading thread might

see values of some other field, i.e., read out-of-thin-air values.

For a shape transition, the object shape and one extension

array would need to be updated atomically (cf. Section 2.2

and the DynamicObject class). This would, however, require

synchronization on each object read and write access. Without

synchronization, a read from a shared object can see a shape

that is newer than what the object storage represents, or see

an object storage that is newer than what the shape describes.

This can happen because some update might still be under

way in another thread, the compiler moved operations, or the

CPU reordered memory accesses. The result would be that an

undefined, i.e., out-of-thin-air, value might be read that does

not correspond to the field that was expected. Synchronizing

on every access operation, however, is very expensive, and

needs to be avoided to preserve performance. Instead, we

adjust the object storage to remove the need for read-side

synchronization, as described in the next section.

4.2 Separate Locations for Pairs of Field and Type

In the presence of possible inconsistencies between object

storage and shape, we need to avoid reading the wrong

storage location (as it would produce out-of-thin-air values).

We make this possible without synchronization by changing

how the object model uses storage locations in the object

storage. Since out-of-thin-air values are caused by reusing

storage locations, we change the object model to use separate

locations for each pair of object field and type.

By ensuring that storage locations are only used for a

single pair of field and type, it is guaranteed that a read can

only see values related to that field, and cannot misinterpret it

as the wrong type. If a stale shape is used, the field description

might not yet be present in the shape, and we will perform

the semantics of an absent field, which is also acceptable with

our safety definition.

If the shape has already been updated, but the storage

update is not yet visible, the operation could possibly access

a field that is defined in the new shape, but whose storage

location does not exist in the old storage. To account for

this case, we furthermore require that the object storage only

grows, and is allocated precisely for a specific shape, so that

the object storage has a capacity fitting exactly the number of

storage locations. With this design, an access to such a non-

existing storage location results in an out-of-bounds error,

which can be handled efficiently to provide the semantics of

an absent field.

Since we require that the storage only grows and storage

locations are not reused, we cannot just remove the corre-

sponding storage location when removing a field from an

object. Instead, we must keep that storage location and mi-

grate to a shape where the field is marked as “removed”.

As a consequence of this design, it is guaranteed that any

object storage location is assigned to a single field only, i.e.,

there is no reuse of storage locations even though fields can

be removed or they might require a different storage location

because of type changes. This ensures, for instance, that

values are never interpreted with an inconsistent type or for

the wrong field. Therefore, any data race between updating

an object’s shape and its extension arrays cannot cause out-

of-thin-air values at the reader side.

While this strategy prevents out-of-thin-air values, it can

increase the memory footprint of objects. This issue and its

solutions are discussed in Section 6.2.
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4.3 Write-side Synchronization

Object writes need synchronization to prevent lost field

definitions and lost updates, because writing to a field can

cause a shape transition. For instance, when the value to be

written is incompatible with the currently allocated storage

location, the shape needs to be updated to describe the new

location (cf. Section 2.2).

For such shape transitions, the object storage needs to be

be updated, and one of the extension arrays potentially needs

to be replaced, too. In order to keep the synchronization

strategy simple, all forms of updates are synchronized by

locking the corresponding object for the duration of the

update. This sequentializes all updates to prevent lost field

definitions and lost updates, achieving the desired safety.

To minimize the overhead of synchronization, the object

model uses it only for objects that are shared between mul-

tiple threads. The next section details how we distinguish

between thread-local and shared objects.

5. Local and Shared Objects

This section introduces our approaches to distinguish local

and shared objects and to make deep sharing efficient.

5.1 Distinguishing Local and Shared Objects

The synchronization overhead for object updates is only

necessary for objects that are shared between multiple threads.

If an object is local to a single thread, synchronization can

be omitted. To perform synchronization only on objects that

can be accessed by multiple threads, local objects need to

be distinguished from shared ones. We do this by assigning

local and shared objects different shapes, so that when an

object becomes shared, its shape is changed to a shared

variant which indicates that the object it represents is shared

between multiple threads. Using different shapes allows us

to reuse existing shape checks, which are already performed

during object accesses, and to automatically choose the right

semantics to perform them without needing an additional test

to know if an object is local or shared.

An object becomes shared the first time a reference to it is

stored in a globally-reachable object. Globally-reachable ob-

jects are objects which can be reached from multiple threads.

This includes an initial set of objects and all objects that

over time become reachable from this initial set. The initial

set is language-specific but typically includes global objects

such as classes, constants, and generally data structures that

are accessible from all threads. In Java, the initial set would

also include objects stored in static fields, and in Ruby it

would also include objects stored in global variables. A de-

tailed overview of an initial set for Ruby is given later in

Section 7.4. The conceptual distinction between local and

shared objects based on reachability was first introduced by

Domani et al. and is detailed in Section 8.1.

Note that tracking sharing based on reachability over-

approximates the set of objects that are used concurrently

by multiple threads. However, it avoids tracking all reads,

which would be required to determine an exact set of shared

objects. Shared objects also never become local again as this

would require knowing when a thread stops referencing an

object. Therefore, to maintain this set of globally-reachable

objects during execution, we only need a write barrier on

fields of already-shared objects, detailed in the next section.

As a result, we can dynamically distinguish between local

and shared objects, allowing us to restrict synchronization

to objects that are accessible by multiple threads. The main

assumption here is that for good performance, multithreaded

programs will minimize the mutation of shared state to avoid

sequential bottlenecks, and thus, writing to shared objects is

rare and synchronizing here is a good tradeoff between safety

and performance.

5.2 Write Barrier

To track all shared objects, the write operation to a field of an

already shared object needs to make sure that the assigned

object is being shared before performing the assignment to

the field, because this object suddenly becomes reachable

from other threads. Not only the assigned object needs to

be marked as shared, but all objects that are reachable from

it as well since they become globally-reachable once the

assignment is performed. Therefore, sharing an object is a

recursive operation. This is done by a write barrier illustrated

in Figure 5.

Note that sharing the object graph does not need synchro-

nization as it is done while the object graph is still local and

before it is made reachable by the assignment.

The write barrier decides what to do based on the type of

the assigned value as well as its shape if the value is an object.

If the value has a primitive type, then it does not have fields

and cannot reference other objects, so it does not need to be

shared. If the value is an object, it needs to change its shape

to a shared variant of it, unless the object is already shared.

For optimal performance, the write barrier specializes itself

optimistically on the type and shape of the value for a given

assignment. The type and shape of a value are expected to be

stable at a certain assignment in the source code, as the value

is assigned to a specific field, and application code reading

from that field typically has specific expectations on its type.

When an object gets shared, the following actions are taken:

• the object shape is changed from the original non-shared

shape to a shape marked as shared with the same fields

and types.

• all objects reachable from the object being shared are also

shared, recursively.

5.3 Deep Sharing

Sharing all reachable objects requires traversing the object

graph of the assigned object and sharing it, as illustrated

by the share() method in Figure 5. Such a traversal has a

considerable run-time overhead. To minimize this overhead,
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void share(DynamicObject obj) {

if (!isShared(obj.shape)) {

obj.shape = sharedShape(obj.shape);

// Share all reachable objects

for (Location location :

obj.shape.getObjectLocations()) {

share(location.get(obj));

}

}

}

void writeBarrier(DynamicObject sharedObject,

Location cachedLocation,

Object value) {

// (1) share the value if needed

if (value instanceof DynamicObject) {

share(value);

}

// (2) assign it in the shared object

synchronized (sharedObject) {

cachedLocation.set(sharedObject, value);

}

}

Figure 5. Write Barrier for shared objects. Objects are

marked as shared (1) before they are made reachable by other

threads (2). The second step, i.e., the publication is the assign-

ment of the value to the object field of an already globally

reachable object. In share(), the getObjectLocations()

method returns all storage locations that contain references.

we use the information provided in shapes to optimize the

traversals of the graph. That is, we look at the fields of

the assigned object and specialize on the shapes of the

objects contained in those fields. We apply this optimization

transitively, with a depth limit to avoid traversing large object

graphs. Larger graphs are shared without this optimization.

This optimization is done by building a caching structure

that mirrors the structure of the object graph of the assigned

object. For example, imagine that the object to be shared is

a Rectangle described by two Point instances represent-

ing the top-left (tl) and bottom-right (br) corners. Point

instances only contain numeric values and therefore do not

need to propagate the sharing further. The caching structure is

in this case a tree of 3 Share nodes, one for the rectangle and

two for the two points, illustrated in the middle of Figure 6.

The caching structure is part of the program execution.

The corresponding nodes are in fact Truffle AST nodes

that implement the sharing. Sharing the Rectangle with this

caching structure in place amounts to checking that the 3

object shapes match the local Rectangle and Point shapes,

and updating them to their shared variants.

The Truffle AST can then be compiled, exposing the struc-

ture of the object graph to the compiler. Figure 7 represents

Java code that is illustrative of the output of the partial eval-

uation phases of the Graal compiler applied to the AST in

Figure 6, with AST node bodies inlined, loops unrolled, and

code executed as far as it can be without run-time values.

However, the real output of the compiler is machine code, not

Java code as shown here.

In this way, the compiler can generate code to efficiently

check for the structure of a specific object graph and without

having to read primitive fields. This optimization therefore

allows us to check efficiently if a small object graph matches

a previously seen structure with just a few shape checks and

field reads. Furthermore, it minimizes the overhead of sharing

to just changing a few object shapes.

In more technical terms, the purpose of the optimization

is to enable partial evaluation of the share method with

respect to the structure of observed object graphs. That

is, we want to compile an efficient version of the share

method specialized for the object graph structure observed at

a particular field assignment site. The technique also works

in the case of circular object graphs, because the AST is built

while sharing is performed, such that recursive references

do not create a child node when an object is already shared.

This optimization is similar to dispatch chains [12, 19], but

instead of caching the result of a lookup or test, the full tree

structure is built to capture the structure of an object graph.

6. Discussion

The design choices of Sections 4 and 5 have tradeoffs, which

are discussed in this section.

6.1 Sharing Large Object Graphs

As discussed in Section 5.3, the write barrier can be well

optimized for small object graphs. However, a traversal is

required to share large object graphs. The write barrier needs

to ensure that all objects referenced transitively from the

initial sharing root, which are not already shared, become

shared. This can have a significant effect on performance by

introducing overhead for sharing that is proportional to the

size of the object graph.

One technique to address this is to eagerly pre-share

objects that are likely to be shared eventually so to avoid the

traversal of larger structures. This can be achieved by tracking

whether objects become shared, based on their allocation site.

To this end, some metadata can be associated with the object

allocation site to keep track of how many objects are allocated

and how many of them are shared later on. If the number of

object allocations resulting in object sharing is high, objects

created at the specific allocation site could be pre-shared,

i.e., assigned a shared shape directly when allocated. This

would avoid the large object graph traversal and instead only

share single objects or smaller structures as they are added

to the large object graph. Objects added to the graph will be

pre-shared as well if most of the objects allocated at the same

allocation sites are later added to a shared object graph.
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Figure 6. Deep Sharing of a Rectangle and two Points. The AST mirrors the structure of the Rectangle and its Points. The

Share nodes check if an object matches the expected shape and update it to a shared variant.

void shareRectangle(DynamicObject rect) {

if (rect.shape == localRectangleShape) {

rect.shape = sharedRectangleShape;

} else { /* Deoptimize */ }

DynamicObject tl = rect.object1;

if (tl.shape == localPointShape) {

tl.shape = sharedPointShape;

} else { /* Deoptimize */ }

DynamicObject br = rect.object2;

if (br.shape == localPointShape) {

br.shape = sharedPointShape;

} else { /* Deoptimize */ }

}

Figure 7. Specialized sharing function for a Rectangle and

its two Points. This code illustrates what the Deep Sharing

nodes in Figure 6 perform when they are compiled down to

machine code.

This technique is similar to what is done by Domani et al.

[9] and Clifford et al. [6]. Domani et al. use such a technique

to allocate objects directly in the global heap as described in

further detail in Section 8.1. Clifford et al. use mementos to

gather allocation site feedback and drive decisions such as

pre-tenuring objects, the choice of collection representation,

and initial collection storage size.

So far, we have not experimented with this approach,

because the benchmark set we use does not present the need

for this optimization.

6.2 Optimizing Memory Usage of Objects

To ensure safe concurrent reads without synchronization, our

approach requires that storage locations are not reused by

different pairs of field and type. This may potentially lead to

unused space in objects in which field types changed or fields

were removed. For objects where field types changed, only

one storage location per field can be left unused, because

at most one type transition per field can happen (from a

primitive type to Object, as field types can only transition

to a more general type). For objects where fields were

removed, previously allocated storage locations will not be

reused. We consider this a form of internal fragmentation

of the object storage. Although fragmentation can result in

increased memory consumption for pathological cases with

many field removals, we do not consider this aspect a practical

limitation of our object model, as removing fields from an

object is considered an operation that happens rarely, and

type transitions are limited by the number of fields.

One solution to this problem would be to trigger a cleanup

phase for objects and their shapes. Such a cleanup would

compact objects and their corresponding shapes by removing

unused storage locations. This could be realized either based

on a threshold for the degree of fragmentation observed for

shapes, or be done periodically. The main requirement for

safety would be to ensure that no threads can observe the

updates of shapes and objects, which can be realized using

guest-language safepoints [7]. Since such a cleanup phase

would have a performance cost, it could also be integrated

with the garbage collector, which could minimize the cost by

combining the cleanup with a major collection.

6.3 Correctness when Interacting with External Code

A language implementation using our safe object model

likely interacts with existing code such as Java libraries or

native code via Java’s native interface. To ensure correctness

for objects handed to such external code, we mark these

objects as shared even if no other threads are involved. This

is necessary because it is not guaranteed that the external
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code does not use threads itself. Furthermore, we expect

external code to treat objects as opaque handles and use the

correct accessor functions of the object model, which do the

necessary synchronization. External code that does not use

these accessor functions is considered inherently unsafe and

outside the scope of this work.

6.4 Language-Independent Object Model

The Truffle object model is a language-independent runtime

component and is currently used by Truffle-based language

runtimes, including JRuby+Truffle. Our safe object model is

fully-compatible with the Truffle object model API, and can

be used as a drop-in replacement for any language runtime

based on the Truffle framework. We consider this as an added

value for our safe object model, as it implies that it can be

used for a wide range of languages, including class-based

languages such as Smalltalk, prototype-based languages such

as JavaScript, or languages with more complex object models

such as R [21].

The language independence of the safe object model

has the benefit that a wide range of languages can use

shared-memory concurrency. Even if it is arguable whether

explicit shared-memory concurrency like in Java or Ruby is

a desirable programming model, our safe object model can

be used as the core underlying runtime mechanism to enable

disciplined concurrency models that may support higher-level,

safe, and concurrent access to shared objects.

6.5 Parallel Field Updates on Same Object are Limited

One conceptual limitation of the proposed object-granularity

for synchronizing objects is that the safe object model does

not allow multiple field updates for the same object at the

same time (the update will be sequentialized by the object

monitor). For instance, with Java’s object representation it

is possible to update separate fields from different threads

in parallel. However, we believe that not supporting such

parallel updates is not a major limitation. Even in Java,

parallel updates to fields in the same object are highly

problematic if the fields are on the same cache line, because

the contention will degrade performance significantly. Thus,

for performance it is generally advisable to avoid designs

that rely on updating fields in the same object in parallel.

Furthermore, it is unclear whether the performance cost of

more fine-grained locking would be a good tradeoff to support

this minor use case.

6.6 Lazy Sharing of the Initial Set of Shared Objects

As an optional optimization, tracking of shared objects only

needs to be done in truly multithreaded programs. Thus,

shared shapes start to be assigned only when a second thread

is created. Before the second thread is started, the initial set

of globally-reachable objects and all objects reachable from

it become shared.

This has the benefit of not requiring any synchronization

for purely sequential programs. Furthermore, it can improve

the startup behavior of applications, because the object graph

of the initial set of shared objects is only traversed when the

second thread is started. However, after implementation, we

found that this optimization makes no significant performance

benefit as confirmed in the evaluation. Our approach to

distinguish between local and shared objects seems to be

sufficient already.

6.7 Alternatives for Class-based Languages

For languages with explicit classes that support dynamic

adding or removing of fields, there are alternative designs

for a safe object model. Assuming that the set of fields

always stabilizes for all instances of a class, safety could be

ensured without synchronization in the compiled code. With

this assumption, it would be rare that the layout of classes

changes, and instead of using a fine-grained synchronization

as in our approach, synchronization could be done globally.

Thus, instead of using a per-object lock for writes, a global

synchronization point, such as a safepoint [7], could be used

when class layouts need to be changed. This synchronization

would coordinate all threads to perform the change for all

objects as well as updating the class layout to include the

new field. This approach has however other tradeoffs such

as less fine-grained type specializations (per class instead

of per instance), potential memory overhead (all instances

have all fields), and scalability and warmup concerns (layout

changes need global synchronization). Whether the stability

assumption holds is also unclear, and would most likely need

a fallback mechanism for less stable classes.

7. Evaluation

We evaluate the proposed safe object model based on

JRuby+Truffle [30], a Ruby implementation on top of the

Truffle framework and the Graal just-in-time compiler.

We evaluate our safe object model by comparing it to the

unsafe version of JRuby+Truffle over a range of benchmarks

to analyze, namely, the performance for sequential code, the

worst-case write overhead, the cost of sharing, the perfor-

mance for parallel actor benchmarks, and the memory usage.

To relate our results to existing systems, we use Java and

Scala on the HotSpot JVM, as well as JavaScript on V8, to

demonstrate that our implementation of Ruby has reached a

competitive performance level and to draw conclusions about

the peak performance impact of our approach.

7.1 Methodology

All benchmarks discussed in this section are executed

on a machine with an Intel Xeon E5-2690 with 8 cores,

2 threads per core, at 2.90 GHz. The Java VM is config-

ured to use up to 2GB of heap space. All results are based

on revision 2075f904 of Graal1 and revision 0bd7fa2d of

JRuby+Truffle2.

1 https://github.com/graalvm/graal-core/commit/2075f904
2 https://github.com/jruby/jruby/commit/0bd7fa2d
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Since Truffle and Graal are designed for implementing lan-

guages for server applications, this evaluation focuses on peak

performance to assess the impact of the safe object model on

the performance of long-running code. Consequently, each

benchmark is executed for 1000 iterations within the same

VM instance. We manually verified that all benchmarks are

fully warmed-up after the 500th iteration. Discarding the

warmup iterations provides us with data on the peak perfor-

mance. Each benchmark is run in a configuration where each

iteration takes at least 50ms, ensuring that timing calls are

insignificant in the iteration time and the precision of the

monotonic clock is sufficient for accurate comparisons. For

visualizing the results, we use traditional box plots that in-

dicate the median and show a box from the 1st to the 3rd

quartile. The whiskers extend from the box to the farthest

value that is within 1.5 times the interquartile range.

7.2 Baseline Performance of JRuby+Truffle

Since this work is based on JRuby+Truffle, we first demon-

strate that its performance is competitive with custom-built

dynamic language VMs. For that purpose, we take a set of

twelve benchmarks that have been implemented for Java,

JavaScript, and Ruby to enable a comparison of a set of core

features of object-oriented languages [20]. This includes ob-

jects, closures, arrays, method dispatch, and basic operations.

The benchmark set includes classic VM benchmarks such as

DeltaBlue and Richards [33], more modern use cases such as

JSON parsing, and classic kernel benchmarks such as Bounce,

List, Mandelbrot, NBody, Permute, Queens, Sieve, Storage,

and Towers. The benchmarks are carefully translated to all

languages with the goal to be as identical as possible, lexi-

cally and in their behavior, while still using the languages id-

iomatically. With this approach, we measure the effectiveness

of the just-in-time compilers, the object representation, and

the method dispatch support, which are the most important

criteria for assessing the performance of an object represen-

tation. While these benchmarks are not representative for

large applications, we believe that they allow us to compare

the performance of a common core language between Java,

JavaScript, and Ruby.

Figure 8 depicts the results normalized to Java 1.8.0_66

as a box plot. The box plot is overlaid with the average peak

performance for each benchmark to detail their distribution

for each language implementation. The plot leaves out the

results for Ruby MRI 2.3, the standard Ruby implementation,

which is at the median 42.5 times slower than Java, as well as

JRuby 9.0.5.0, which is 20.2 times slower. Compared to that

Node.js 5.4, a JavaScript runtime built on Google’s V8 engine,

is an order of magnitude faster. The benchmarks on Node.js

are at the median a factor of 2.4 times slower than Java. The

JRuby+Truffle implementation with the unsafe object model

reaches the same level of performance and is at the median a

factor of 2.2 times slower than the Java implementation. From

these results, we conclude that JRuby+Truffle can compete

with custom dynamic language VMs such as V8.
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Figure 8. Comparing the performance of Java 1.8.0_66,

JRuby+Truffle, and Node.js 5.4 based on twelve benchmarks

that use a set of common language features between all three

languages. Lower is better.

7.3 Impact on Sequential Performance

To verify that our design for a safe object model has no im-

pact on the sequential performance, we use the benchmarks

from the previous experiment. To focus on the object model’s

performance, we report only the results for the benchmarks

that access object fields. We run them in three configurations,

the original unsafe JRuby+Truffle, the version with our safe

and optimized object model, and a configuration where all

objects are shared, which means all object writes are syn-

chronized. This all shared configuration approximates the

worst-case impact of the object model, but does not represent

common application behavior. We added this configuration

also to estimate the overhead of state-of-the-art synchroniza-

tion strategies as used by the JRuby object model.3

As illustrated in Figure 9, there is no significant difference

between the unsafe and safe object model on these bench-

marks. Specifically, the maximum difference between the

medians is 5.1%, which is well within measurement error.

However, the all shared configuration, synchronizing on all

object writes similarly to the state of the art, incurs a large

overhead and is 54% slower than unsafe using the geometric

mean. NBody in the all shared configuration has the largest

overhead and is 2.5 times slower, because there is a very large

number of object writes as it is constantly updating objects

in a N-body simulation.

7.4 Initial Set of Shared Objects

In order to understand the potential of distinguishing between

local and shared objects, we analyze the initial set of shared

objects to determine which objects are globally reachable

when starting an application. This set corresponds to the ini-

tial set for all sequential benchmarks in the safe configuration.

The sequential benchmarks add a few classes and constants

when loading but only in the order of a dozen objects.

Figure 10 lists the number of objects per class in this initial

set. In total, 2,347 objects are globally reachable from the

3 Note that we distinguish consistently between JRuby and JRuby+Truffle,

since only the latter is using the optimized Truffle object model.
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Figure 9. Impact on sequential performance, comparing the unsafe and safe object model. All Shared does not distinguish local

and shared objects, and approximates state-of-the-art object models synchronizing on all object writes. Lower is better.
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Figure 10. The initial set of 2,347 shared objects when

starting an application under JRuby+Truffle with the safe

object model.

top-level constants and the global variables. These objects

are created by the JRuby+Truffle runtime and the core library

written in Ruby. The large number of class objects is a result

of Ruby’s metaclasses, which more than doubles the number

of classes defined in the system. We see many Strings, mostly

from substitution tables and runtime configuration values

exposed to the user. Ruby has a very extensive encoding

support with 101 encodings defined by the system, alongside

many encoding converters. Finally, we can observe some

typical global state such as standard streams, the singleton

nil, and the complex number i. Marking this initial set of

objects as shared takes about 23 milliseconds.

7.5 Worst-Case Field Write Overhead

To assess the worst-case overhead of our approach, we

measure the overhead of field writes to a shared object in a

micro-benchmark. Figure 11 illustrates the benchmark, which

def bench

@count = 0

i = 0

while i < 100_000_000

i += 1

@count = i

end

end

Figure 11. Micro-benchmark for the worst-case field write

overhead. Increasing integer values are assigned to a shared

object field.

is an extreme case, because the loop body only performs an

integer addition, a comparison, and the field write. Since

this benchmark is unsafe for multi-threaded applications, we

also measure a more realistic variant of a counter, which first

locks the object and then increments the field value. With

this application-level synchronization, the benchmark gives

correct results and is measured with four threads incrementing

the counter.

The results for the simple field write show that the safe

object model is up to 20 times slower than the unsafe version.

For the more realistic counter with application-level synchro-

nization, the safe object model is only 28% slower than the

unsafe one.

In both cases, the slowdown is reflected by the complexity

of the resulting machine code. The unsafe version of the

simple field write benchmark only performs a shape check

and an unsynchronized write. The safe version performs

a shape check in the loop body, then enters the monitor,

checks the shape again in the monitor, writes the value to the

field and exits the monitor. Because of the synchronization

semantics of Java, the compiler cannot move performance-

critical operations such as the shape check out of the loop.
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def bench

i = 0

while i < 1_000_000

@shared = Rectangle.new(

Point.new(i-2, i-1),

Point.new(i+1, i))

i += 1

end

end

Figure 12. Benchmark for the deep sharing optimization.

Rectangles are created and assigned to a shared object field.

The code generated for entering and exiting a monitor is

large and contains lots of branches, which we believe is the

main reason for the slowdown. One possible optimization

would be to dynamically profile which path is taken, so that

for instance only the biased locking path would be in the

compiled code. Another alternative is to use a simpler lock

implementation as we discuss in Section 10.

When considering the overhead for both micro-benchmarks,

we must keep in mind that they do not correspond to

application-level performance. The overhead for sequential

code was already measured in Section 7.3. For multithreaded

applications, performance is more similar to the parallel

benchmarks discussed in Section 7.7.

7.6 Impact of Deep Sharing

To assess the impact of the deep sharing optimization, we

created a micro-benchmark similar to the example in Figure 6.

The benchmark, illustrated in Figure 12, creates instances of

Rectangle in a loop, each of them containing two instances

of Point describing the top-left and bottom-right corners in

two-dimensional cartesian coordinates. Each rectangle is then

assigned to a shared object field.

Deep sharing is a crucial optimization here and improves

performance by 35×. Without the optimization, the rectangle

is shared using a generic routine (cf. Figure 5) that checks

every field of the object, collects object references, and then

performs the same analysis recursively on the referenced

objects until all reachable objects are shared (in this case

the Rectangle and the two Points). With our deep sharing

optimization on the AST level, sharing the rectangle is

essentially free. The compiler sees the structure of the checks

at compilation time and can fold all shape checks, field reads,

and shape changes. It allocates the objects only right before

the assignment to the shared object field, which makes it

possible to construct the objects directly with the right shapes.

7.7 Parallel Actor Benchmarks

To assess the overhead of the safe object model on parallel

code, we ported three of the parallel Savina actor bench-

marks [13] from Scala to Ruby. The benchmarks focus on

parallel computations that are coordinated via messages. They

do not trigger the safety issues discussed in Section 3 by
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Figure 13. Impact on Parallel Actor Benchmarks, comparing

the Scala implementation using Akka, the unsafe object

model and the safe object model. No Deep Sharing disables

the Deep Sharing optimization. Lower is better.

avoiding concurrent access to the same object. Therefore,

they execute correctly also on the unsafe implementation.

Trapezoidal approximates the integral of a mathematical

function using the trapezoidal rule. The APSP (All-Pairs

Shortest Path) benchmark computes the shortest path between

each pair of nodes in a graph using a distributed variant of

the Floyd-Warshall algorithm [10]. RadixSort sorts integers

using the radix sort algorithm.

We use a simple Ruby actor library that employs one

thread per actor, each actor having its own mailbox. Addi-

tionally, we scale the benchmarks so that each thread has its

own CPU core to avoid contention. Figure 13 shows how our

library compares to the widely used and highly optimized

Scala Akka actor framework. On APSP, Akka is 9% faster

than JRuby+Truffle with the unsafe object model. On Radix-

Sort it is 9% slower and on Trapezoidal it is 10% slower than

the unsafe object model.4 From these results we conclude

that our Ruby actors reach a similar level of performance and

are sufficient to measure the impact of the safe object model.

For the comparison of the safe and unsafe object models,

our actor library design implies that almost all objects are

shared. Since actors are run in different threads, the object

representing an actor must be shared as it is referenced from at

least two threads, the one that created the actor and the thread

running the actor message loop. Consequently, all messages

sent between actors must be shared as well, because they

are passed from one actor to another, and therefore from one

thread to another.

Nevertheless, Figure 13 shows that the safe object model

has an overhead of at most 12% compared to the unsafe

version. The geometric mean between all three benchmarks

shows that the safe object model is only 3% slower.

4 The Scala version of the benchmark was changed from using

Math.pow(x,3) to x*x*x, because JRuby+Truffle optimizes the power

operator better, which would have distorted the comparison.
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To characterize the behavior of the benchmarks in more

detail, Figure 15 lists the number of user-defined objects allo-

cated per benchmark iteration. The ratio of sharing is 100%

for the parallel benchmarks, confirming that all user-defined

objects created per iteration end up shared. Trapezoidal is an

embarrassingly parallel workload and requires little commu-

nication. APSP sends over 700 matrices of 90x90 elements

per iteration, represented as one-dimensional integer arrays,

to communicate the intermediate states between the different

actors. RadixSort sends many messages as it sorts 100,000

integers, and each of them is sent in a different message to

the next actor, forming the radix selection chain. Overall,

more than 400,000 messages are sent per iteration resulting

in over 2.6 million messages per second. It is the only bench-

mark with an overhead. Compared to the unsafe version, the

overhead is about 12%.

Figure 13 and the compiled code show the importance of

the structural deep sharing optimization because it greatly

reduces the cost of sharing message objects. When the

message instance is created in the same compiled method

that sends the message, the compiler can completely remove

the overhead of sharing, which is the case for this benchmark

(cf. Section 7.6).

Thus the overhead for RadixSort is neither due to message

sending nor sharing but due to the very frequent and small

workload each actor performs when receiving a message,

which consists of updating at least two fields per message

received. Since actor objects are shared, these field updates

require synchronization.

We consider RadixSort a small benchmark that performs

a very high portion of write operations on shared objects

compared to the other operations it performs. Thus, for the

overhead of the safe object model on parallel applications,

we expect the 12% overhead for RadixSort to be at the upper

end of the range.

7.8 Warmup Performance

One important aspect of a modern language runtime is

warmup performance. That is, how the performance of the

language runtime evolves after initialization and during just-

in-time compilation. To assess the impact of our approach

on the warmup behavior of JRuby+Truffle, we evaluate the

warmup behavior of the different object models on all the

considered benchmarks.

Figure 14 depicts the evolution of the run time per iteration,

for the first 300 iterations of each benchmark. Run times are

normalized to the median run time of the unsafe object model

to allow a better comparison.

As the picture clearly shows, our technique does not affect

the warmup performance of JRuby+Truffle. Overall, the

warmup of the safe object model is very similar to the unsafe

one as the curves mostly overlap. The only two benchmarks

where a warmup performance difference can be highlighted

are APSP and RadixSort. APSP takes the same long warmup

time to stabilize its performance for both the safe and unsafe

object models. Such a long warmup is different from other

benchmarks we have considered, but is not affected by our

safe object model. RadixSort shows, as expected, slightly

lower performance for the safe object model, since the

peak performance is also affected (cf. Section 7.7). The

performance noise in RadixSort seems mostly caused by

the garbage collector, since the benchmark has a very high

allocation rate. Nevertheless, the warmup behaviors of the

two benchmarks do not differ. Overall, we conclude that the

safe object model does not have a negative impact on warmup

performance for the given benchmarks.

7.9 Memory Efficiency

Memory efficiency is a crucial aspect of object representa-

tions. To assess the impact of our approach on memory, we

measured the memory overhead of our thread-safe objects

compared with unsafe ones, using the benchmarks from the

previous sections as well as a new synthetic benchmark de-

signed to evaluate our approach in the worst case scenario.

We also include numbers for a larger application, Sidekiq, a

background job processing library using a Redis queue to

estimate the memory efficiency on bigger programs.

For this evaluation, we instrumented JRuby+Truffle to

track all object allocations, measure the number of shared

objects and the used storage locations for each object. The

results of our evaluation are depicted in Figure 15. All

benchmarks except Startup and Sidekiq only count user-

defined objects allocated per iteration in order to depend

less on language-specific representations of builtin types. In

those benchmarks, builtin types are only allocated by the

implementation (such as a Proc representing a closure) or

are always associated with a user-defined object (such as an

Array backing up a Matrix).

For the benchmarks from the previous sections, using

safe objects rather than unsafe ones introduces no additional

memory cost. As the last column Extra Loc. shows, no extra

storage locations are used by the objects. This is because all

the considered benchmarks are well-typed. In this context,

well-typed means a field which was assigned a primitive value

is never later assigned a reference value or a primitive value of

a different type. As a consequence of the well-typed property,

no type transitions occur during execution, and safe objects

do not require extra memory overhead.

From our experience, Ruby applications seem to be domi-

nated by well-typed objects, considering the definition of

well-typed above. As a larger example program, we use

Sidekiq, a library of about 14,000 lines of Ruby code in-

cluding dependencies,5 which creates one million objects,

with more than 200 different shapes. Out of the million ob-

jects, only three are not well-typed. Specifically, two Task

objects reading from the Redis connection are not well-typed:

one of their fields is initialized with false, indicating that no

5 computed using the sloccount utility for the lib folders of Sidekiq and

its used dependencies.
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Figure 14. Runtime per iteration for the first 300 iterations, normalized to the median runtime for unsafe, illustratring the

warmup of the unsafe and safe object models. Lower is better.

Benchmark Sharing Shapes Objects Frequent Objects Extra Loc.

Startup 35.5% 45/61 2,354/6,640 1,919 String, 1,742 Symbol 0

Bounce 0% 0/2 0/151,500 150,000 Ball 0

DeltaBlue 0% 0/8 0/180,048 108,032 Vector, 36,003 Variable 0

Json 0% 0/7 0/189,900 67,550 JString, 43,350 Vector, 35,600 JNumber, . . . 0

List 0% 0/1 0/23,250 23,250 Element 0

NBody 0% 0/2 0/6 5 Body, 1 NBodySystem 0

Richards 0% 0/8 0/1,350 400 Packet, 300 TaskControlBlock, 300 TaskState 0

Towers 0% 0/1 0/8,400 8,400 TowersDisk 0

APSP 100% 4/4 1,456/1,456 724 Matrix, 724 ResultMessage 0

RadixSort 100% 6/6 400,014/400,014 400,004 ValueMessage 0

Trapezoidal 100% 4/4 14/14 5 WorkMessage, 4 WorkerActor, 4 ResultMessage 0

Sidekiq 2.4% 125/208 25,198/1,050,537 575,734 String, 150,602 Proc, 123,469 Array 3

Figure 15. User-defined objects allocated per iteration for each benchmark. Startup and Sidekiq count all objects including

builtin types, allocated over the whole program execution. Class objects are not counted in this figure. Sharing ratios are

expressed as number of shared / total. Frequent objects are those who represent more than 10% of the total.

data is available from Redis yet. When some data is received,

the field value is replaced with a String object with the in-

coming data, which causes a type transition from a boolean

location to a reference location. The other object which is not

well-typed is an instance of JSON State, which is configured

to raise an error if the object to serialize is too deep or circu-

lar. In this case, a field of the object (called @max_nesting)

is first initialized with false, and then later reassigned to an

integer: although both values are of primitive type, the type

transition requires a migration from a primitive storage lo-

cation to a reference one, in order to avoid too many shape

changes as well as to ensure type correctness.

When an application is not dominated by well-typed ob-

jects, our approach could incur a memory overhead that is up

to 2 times as large as the memory used by the baseline imple-

mentation for each non-well-typed object. This overhead is

caused by the need to keep extra primitive locations to allow

unsynchronized reads at all times (cf. Section 4.2).

To measure the impact of such a worst-case scenario, we

designed a micro-benchmark that creates an object with 10

fields, which are initialized in a first phase with primitive

values such as integers. In a second phase, reference values

are assigned to all these fields. This effectively forces the

object model to allocate space for reference locations, and

in the case of the safe object model also requires to keep

the old primitive locations. The memory overhead for the

micro-benchmark is therefore the number of extra primitive

locations. This means the safe object model must keep 10

reference locations and 10 primitives locations instead of just

10 reference locations.

In practical terms, this translates in our benchmark envi-

ronment to a total size of 104 bytes for one such object with

the baseline and 176 bytes for the safe object model. We con-
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sider this a reasonable trade-off as the ratio of not well-typed

objects seems to be very low. As discussed in Section 6.2,

this overhead could also be reduced dynamically in case an

application has many such extra storage locations, e.g., by

compacting shapes as part of garbage collection.

8. Related Work

Most related work is on language runtimes and synchroniza-

tion techniques. This section provides an overview and dis-

cusses how these techniques relate to ours.

8.1 Memory Management and Garbage Collection

For garbage collectors, Domani et al. [9] introduced a distinc-

tion between local and global objects based on reachability

that is identical to our distinction of local and shared ob-

jects. The distinction is not made with the shape but with

a bit per object, stored in a separate bitmap. They also de-

scribe the corresponding write barrier to dynamically monitor

when objects become global and share their transitive clo-

sure, much like ours in Section 5.2. Their goal is to allow

thread-local synchronization-free garbage collection. One

of their optimizations is to allocate objects directly in the

global heap, described in Section 6.1. They find this opti-

mization crucial in their approach, as it reduces by multiple

factors the sweeping time. Indeed, global objects allocated in

thread-local heaps partition the free spaces, and the number

of free spaces proportionally increases the sweeping time. It

is therefore essential to limit the number of global objects in

thread-local heaps. We do not have a related concept to this

unfortunate side-effect in our model.

8.2 Tracking Reachability and Precise Sharing

As part of an effort to define concurrency metrics for the

DaCapo benchmarks, Kalibera et al. [15] compare two tech-

niques to track object sharing between threads. The first one

tracks reachability as in our model and the second precise

technique identifies objects as shared only if they are ac-

cessed by multiple threads through their lifetime. They find

a significant gap between the ratio of shared objects (num-

ber and total size) reported by the two techniques on these

benchmarks. The gap lessens when looking at the proportion

of reads and writes on shared objects, but remains as high

as 19%. In our evaluation, we demonstrate that our overhead

remains limited to at most 12% even on benchmarks where

almost all objects are shared. Therefore tracking reachability

seems a good trade-off of performance versus precision.

8.3 Object Representations

As discussed in Section 3.1, as far as we know, only a few

dynamic language runtimes use object representations that

are safe for use with multithreading.

Jython’s object model implements Python objects based

on Java’s ConcurrentHashMap class [14]. Thus, all object

accesses are synchronized and safe with respect to our defi-

nition. However, as in the sequential case for which SELF’s

maps [5] were designed, using a hash table cannot compete

in terms of performance.

JRuby’s object model [25] uses an array of references to

store the field values and thus uses an approach similar to

SELF’s maps. Compared to the Truffle object model [35], it

does not support specializing on field types, e.g., for integers

or floats. For adding fields to an object, the array needs to be

replaced with a larger one, which requires synchronization to

guarantee safety. Similar to our approach, a field read is done

without synchronization. However, JRuby synchronizes field

writes for all objects regardless of sharing, to avoid losing

concurrent updates and definitions.

By distinguishing local and shared objects, our approach

avoids any overhead on sequential applications. In combina-

tion with the type-specialization of the Truffle object model,

it also provides additional performance benefits.

8.4 Minimizing Synchronization and Avoiding it at

Run Time

Other related work has been done with the goal of mini-

mizing the overhead of synchronization primitives. Biased

locking [32] is arguably the most popular technique in this

domain. Biased locking relies on the assumption that locks

are rarely contended, because even though a specific ob-

ject might be accessed in parallel, often objects are only

used temporarily by a single thread. When this assumption

holds, lock acquisition is never attempted and a more efficient

lock-less operation is performed instead. VM-level run-time

checks and synchronizations ensure that once a lock becomes

contended the correct behavior is enforced. The technique

is implemented in several VMs (e.g., in Oracle’s HotSpot

JVM [8]), and is often combined with JIT compilation [29].

Our technique shares the goal of avoiding unnecessary opera-

tions for thead-local objects. The strategy for biased locks is

even more optimistic than ours by using a full lock only when

it is actually accessed by multiple threads. However, it also

needs to keep track of the thread owning the lock and check

at each access if the owner is the same as the current thread.

Our technique does not impose any overhead for object reads.

Note that the synchronization used for shared object writes

in our model uses biased locks in HotSpot.

In addition to locking and similar explicit synchroniza-

tion primitives, the distinction between objects that require

synchronization and others that do not has been applied to

other synchronization techniques, too. As an example, several

implementations of software transactional memory (STM)

reduce the overhead of the STM runtime by avoiding or mini-

mizing unnecessary operations. One notable example is the

LarkTM STM [37], which assumes every object to be read-

only until a transaction attempts to modify it. Similarly, there

are examples of STMs that have been integrated with lan-

guage runtimes and JIT compilers [1, 18] to apply common

techniques such as escape analysis to reduce the overhead

of STM read and write barriers. Our approach is integrated

with the language runtime at a similar level of abstraction,
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but unlike common STM algorithms it does not impose any

run-time overhead (e.g., due to logging) as long as objects

are not shared.

9. Conclusion

We presented a novel way to efficiently handle access to

dynamically-typed objects while guaranteeing safety when

objects are shared between multiple threads. Our safe object

model prevents lost field definitions and lost updates, as

well as reading out-of-thin-air values, which are common

problems for object models derived from SELF’s maps [5].

Furthermore, we minimize the need for synchronization to

avoid the corresponding overhead.

Generally, object models for dynamic languages provide

an efficient run-time representation for objects to implement

field accesses as direct memory accesses even though lan-

guages support dynamically adding and removing fields.

Our approach guarantees safety by enforcing that different

field/type pairs use separate storage locations, as well as

synchronizing field updates only for objects that are reachable

by multiple threads. Object reachability is tracked efficiently

as part of the object representation, and is optimized by

using knowledge about the run-time object graph structure

to minimize the operations necessary for marking objects as

shared between multiple threads.

We evaluate our approach based on JRuby+Truffle, a

Ruby implementation using the Truffle framework and the

Graal just-in-time compiler, which reaches the same level

of performance as V8. The evaluation of the sequential

performance shows that our approach incurs zero overhead on

peak performance for local objects. Parallel actor benchmarks

show that the average overhead on benchmarks that write

to shared objects is as low as 3%. From these results we

conclude that the proposed object model enables an efficient

and safe object representation for dynamic languages in

multithreaded environments. By being language-independent,

the model applies to a wide range of dynamic languages.

Therefore, the techniques presented in this paper enable

objects of dynamic languages to be used for shared-memory

parallel computations while remaining safe and efficient.

10. Future Work

The results of this paper open up a number of new avenues

for future research.

Currently, the object model relies on out-of-bounds checks

to handle the race between updating an object’s shape and

one of its extension arrays (cf. Section 4.2). To further

improve performance, such out-of-bounds checks could be

removed. To this end, it needs to be ensured that the shape is

never newer than the extension arrays to avoid out-of-bounds

accesses. This could be ensured by encoding the dependency

between these elements with memory barriers and compiler

intrinsics, ideally without restricting optimizations on the

corresponding performance sensitive memory operations.

Another performance-related aspect is the use of Java

object monitors for synchronizing shared object writes. Java

monitors are optimized in the HotSpot VM by implementing

biased locking, which minimizes the overhead when a shared

object is only used by a single thread. However, there might

be better-performing lock implementations for our object

model. Particularly, when lock contention is high, Java’s

monitors are suboptimal. Instead, some custom lock could

be used, for instance based on Java 8’s StampedLock, which

scales better for write-contended workloads.

With the safe object model presented in this paper, the

next step is to widen the scope of problems considered. Built-

in collections such as arrays, maps, and sets of many dy-

namic programming languages have similar safety issues (cf.

Section 3) leading to, e.g., out-of-bounds exceptions or lost

updates when they are dynamically resized. The problem is

further exacerbated by sequential approaches to optimize their

representation such as collection storage strategies [4, 27].

While these strategies improve the sequential performance

significantly, it still needs to be investigated how they can be

made safe for multithreaded environments.

Assuming a language implementation with safe objects

and safe built-in collections, it would further be interesting to

determine which useful guarantees are still missing compared

to classic implementations using a global interpreter lock. We

hope that such improvements could bring dynamic languages

closer to a point where they can provide simple and safe

parallel programming models to their users.
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