
Must Java development be so slow?
An "Oberon-inspired" Java environment might have some answers

E x t e n d e d A b s t r a c t
Albrecht Wöß

Johannes Kepler University Linz, Systemsoftware Group
Altenbergerstr. 69, 4040 Linz, Austria

woess@ssw.uni-linz.ac.at
http://www.ssw.uni-linz.ac.at

ABSTRACT
Starting a new VM each time an application is executed, forces
numerous classes to be loaded multiple times. This overhead
significantly slows down the development of Java software. So
don't do it! We plan to eliminate these bottlenecks with an open
Java environment where only one VM hosts all applications and
classes are loaded only once.
Furthermore we want to add a powerful textual user interface
that allows command execution at a mouse-click in any text,
supports literate programming, and thus highly enhances Java
programming, development and maintenance of Java software.

1. PURPOSE
As one can deduce from the title of this poster presentation,
which just poses a question without giving a definite answer, this
piece of research is at a very early stage. This is at the same time
the main reason for it to go into a poster session. We like to
expose our intentions to public discussion as soon as possible,
because we expect them to raise controversy, and we want to
ensure that we are going into the right direction.

2. INTRODUCTION
In 1986 Niklaus Wirth set out to build an operating system and
compiler from scratch. The result of this effort was the Oberon
System [7] [6]. This operating system and software development
environment has some unique features that distinguish it from
most other state-of-the-art IDEs. The most interesting features
are: (a) commands which provide programs with multiple entry
points, (b) dynamic loading of modules which stay resident until
they are explicitly unloaded again, and (c) a powerful textual
user interface based on commands and embedded objects.

3. GOALS & CONTRIBUTIONS
What we intend to do is to build a Java Development (and

maybe Execution) Environment that brings some of the features
of the Oberon System into the Java World. Our main goal is, as
stated in the abstract, to avoid unnecessary reloading of classes,
but there are other "goodies" in Oberon that we miss when
programming in Java.

3.1 Class Loading and Modularity
We started out by considering the way Java executes

programs and loads classes. First we did not want to have a
separate virtual machine (VM) running for every executing
program (= OS-process based multi-tasking). When using a

single multi-tasking VM the usual approach is to use separate
class loaders for each application (e.g. [2] uses a Java-process
based approach). Thereby one achieves a maximum amount of
safety, since each application will be provided its own private
copy of each class, because class loaders introduce additional
namespaces (besides packages), and thereby let one and the same
class appear as different types to different applications (for more
information about Java class loading see [4]). We did not like
this approach either, because it requires many classes to be
loaded multiple times (over 200 for a "Hello World"-program,
more than 1000 for a very simple Swing-application). We wanted
to ensure that each class is loaded only once and can then be
used by all applications. This is one way to reduce class loading
effort and thereby start-up time. [1] employs an interesting
concept of sharing program code completely among applications
but still strictly separating them by replicating their static fields,
and thus prohibiting communication between them.

This separation, however, is still not in the spirit of the
Oberon system, where maximum extensibility, cooperation and
integration of different programs are achieved by complete
sharing of all loaded modules (including their state). That is why
we call it an "open" environment.

A consequence of the extended module sharing is that
classes are not unloaded automatically when they are no longer
used by any program. We want to keep them in memory until
they are explicitly unloaded. When a program terminates the
classes it has used stay in memory and can thus be "recycled" by
a next program without further need to reload them. Only when a
developer wants to replace an erroneous version of a class with a
new one, she would explicitly unload the old instance. When the
class is needed again, the new version will be loaded.

Since reusing classes that are already loaded does not call
the static initializers, our environment will require a different
programming style for certain classes. Class state that should not
be shared between applications has to be separated (and
initialized) explicitly by the programmer. On the other hand, our
approach allows the programmer to share class state between
applications, which is not possible in other Java environments.

Regarding classes as modules that provide certain
functionality, allows the realization of minimal systems, meaning
that e.g. a word-processor does not have to load a module (class)
for displaying images unless it actually needs to process an
image. If that image processing module happens to be loaded,
e.g. because an image viewer has been running before, no more

loading needs to take place, and no more memory will be wasted
by a second copy of the same module.

3.2 Commands
We plan to introduce a (to Java) new concept of program

entry point. Like Oberon we would like to allow a class to
provide more than just one entry point. Currently Java program
execution can only start with the main-method of a class. We
want to provide a user with the possibility to directly invoke not
only the main-method, but other methods, too. These methods
will be called "commands" and separate the "unit of compilation
(and loading)" (= class) from the "unit of action" (= command).
Whether only static methods will qualify or if we will even add
some kind of scripting language that supports object creation and
then invocation of instance methods, is yet to be determined.

3.3 Text
We also work to supply the Java world with an equivalently

powerful concept of text as introduced by Oberon. The notion of
text, which most current development tools employ, is a
sequence of ASCII- or Unicode-characters. This not only limits
the expressiveness of source code, but also decreases turnaround
time in the development process. When text is no longer just a
sequence of characters, but one of objects, a whole new way of
writing source code becomes feasible.

Combining the new text model with the above mentioned
commands allows command names (like MyClass.foo,
MyClass.bar, ...) to serve as "textual buttons" that invoke the
respective command when the user clicks on them in a text. This
make it possible for a user to write command menus using a
simple text editor and store them in text files. In order to open
the menu, the user simply opens the file in the editor and clicks
on the command names. Thus the user has to type the commands
only once(!), which will have some implications: First of all it
saves a developer from going out of her way to implement a GUI
to use a class' functionality. Secondly each user can create her
individual tool text in a blink of an eye. Thirdly, instead of being
forced to retype the same commands again and again at command
prompts, one will save a lot of typing effort this way. This will
further lead to more descriptive command names like e.g.
Files.Directory, System.ListClasses, etc. instead of the
widespread, but still rather cryptic abbreviations like e.g. ls, rm,
mkdir. One can provide help texts, tutorials, etc. that not only
describe what the user should do, but provide the directly
clickable commands along the way. And don't forget, one can
easily enlarge the pool of available commands just by writing
another "command class". These commands will then be
immediately available to any user after a few key types and a
mouse click.

3.4 Text Elements
Literate Programming as introduced by [3] can be highly

enhanced by the use of so called Text Elements in your source
code [5]. These can be folding elements that allow parts of the
code to be collapsed into a comment. Cascading such elements
allows replication of the stepwise refinement process of software
development. Graphic elements can be used to improve the
explicability of comments, showing UML or other diagrams,
screenshots and the like. Link and Mark elements support

hypertext-like connections between parts of the document. All
these text elements are inserted directly into the source code and
thus allow a developer to read the code selectively, navigating
from a method call directly to its definition, zooming into
procedures, and so on. An integrated compiler ignores the
elements and just regards the actual program code, so that no
separate conversion from the "annotated" code into a compiler
compatible version is necessary.

A tool shall be implemented that allows automated
generation of WEB-like [3] (or other forms of) printable program
documentation from such Text Elements as they are already
available in Oberon. Note that this approach does not require the
use of any special documentation language.

4. CONCLUSION
Oberon is a remarkable programming environment and

operating system, that - in our opinion - lacks the attention and
appreciation it deserves. Bringing the "good stuff" of Oberon into
the vast Java universe, might help spread some of the
fundamental concepts of Oberon among many software
developers worldwide. This, we believe, will be a huge benefit
for all resulting software products.

Since Oberon supplies not only an IDE, but also an
operating system along the way and the areas of application
differ widely (single-user for Oberon, worldwide multi-user for
Java), one important aspect of this PhD thesis will be to evaluate
the chances of the Oberon approach in the Java universe. For
example versioning is a crucial issue here. When reusing a
loaded class, one must make sure that it is actually the class one
is looking for. Since class names do not suffice to distinguish
java types, this might become tricky.

There are many more issues that remain to be investigated,
and some, which we are still unaware of, may - hopefully - come
up at the poster discussions.

5. REFERENCES
[1] Czajkowski, G. Application Isolation in the Java™ Virtual

Machine, in Proceedings of OOPSLA '00 (Minneapolis MN,
October 2000), ACM Press, 354-366.

[2] Gorrie, L. Echidna - a Free Multitask System in Java™,
http://www.javagroup.org/echidna .

[3] Knuth, D., and Levy, S. The CWEB System of Structured
Documentation, Addison-Wesley, 1993.

[4] Liang, S., and Bracha, G. Dynamic Class Loading in the
Java™ Virtual Machine, in Proceedings of OOPSLA '98
(Vancouver BC, October 1998), ACM Press, 36-44.

[5] Mössenböck, H., and Koskimies, K. Active Text for
Structuring and Understanding Source Code, SOFTWARE
- Practice and Experience, 26(7), 1996, 833-850.

[6] ETH Oberon home page, http://www.oberon.ethz.ch .

[7] Wirth, N., and Gutknecht, J. Project Oberon - The Design of
an Operating System and Compiler, ACM Press, Addison-
Wesley, 1992.

